The TB-Net model takes as input images of shape (N, 224, 224, 3) and outputs the softmax probabilities as (N, 2), where N is the batch size.
If using the TF checkpoints, here are some useful tensors:
- input tensor:
image:0
- logit tensor:
resnet_model/final_dense:0
- output tensor:
ArgMax:0
- loss tensor:
loss/add:0
- label tensor:
classification/label:0
If using the provided dataset interface script, modify the CSV paths accordingly, to point at where the files 'train_split.csv', 'val_split.csv', and 'test_split.csv' are on your system.
We provide a training script that can be used for model training using an untrained model. We provide an untrained version of TB-Net here.
Example command:
python3 train_tbnet.py \
--weightspath 'TB-Net' \
--metaname model_train.meta \
--ckptname model \
--datapath 'data/' \
--epochs 10
We provide an evaluation script that can be used to evaluate a model on the test set. The TB-Net model can be found here.
Example command:
python3 eval.py \
--weightspath 'TB-Net' \
--metaname model_eval.meta \
--ckptname model \
--datapath 'data/' \
DISCLAIMER: Do not use this prediction for self-diagnosis. You should check with your local authorities for the latest advice on seeking medical assistance.
We provide an inference script that can be used to evaluate a single image using the given model. The TB-Net model can be found here.
Example command:
python3 inference.py \
--weightspath 'TB-Net' \
--metaname model_eval.meta \
--ckptname model \
--inputpath 'example_inputs/'