forked from KaviiSuri/GradCamProjectRepo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
233 lines (190 loc) · 7.39 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import zoom
import os
import copy
import time
from datetime import datetime
from SkinMnistDataset import data_transforms
import base64
import io
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
# torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = "cpu"
def imshow(inp, title=None, alpha=1, map=None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.6373545, 0.44605875, 0.46191868])
std = np.array([0.27236816, 0.22500427, 0.24329403])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.switch_backend('Agg')
plt.subplot(1, 2, 1)
plt.imshow(inp)
if map is not None:
plt.imshow(map, cmap='jet', alpha=alpha)
plt.subplot(1, 2, 2)
plt.imshow(inp)
if title is not None:
plt.title(title)
# plt.pause(0.001) # pause a bit so that plots are updated
return plt.gcf()
def set_parameter_requires_grad(model, num_freeze):
for i, param in enumerate(model.parameters()):
if i >= num_freeze:
break
param.requires_grad = False
def train_model(
model,
checkpoint_dir,
best_model_path,
dataloaders,
dataset_sizes,
criterion,
optimizer,
scheduler,
start_epoch=0,
num_epochs=25,
best_acc=0.0,
hist={'val_acc': False, 'train_acc': False}
):
since = time.time()
val_acc_history = hist['val_acc'] or []
train_acc_history = hist['train_acc'] or []
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = best_acc
for epoch in range(start_epoch, num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, torch.max(labels, 1)[1])
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds ==
torch.max(labels, 1)[1].data)
if phase == 'val':
# print('LR Decreased')
print('LR', optimizer.param_groups[0]['lr'])
scheduler.step(loss)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print('Saving as best model')
torch.save(model.state_dict(),
best_model_path)
if phase == 'train':
train_acc_history.append(epoch_acc)
if phase == 'val':
val_acc_history.append(epoch_acc)
if epoch % 4 == 0:
print("Saving Checkpoint")
print("Best Acc", best_acc.item())
torch.save({
"epoch": epoch,
"loss": loss,
"model_state_dict": model.state_dict(),
"best_acc": best_acc,
"hist": {'val_acc': val_acc_history, 'train_acc': train_acc_history}
}, os.path.join(checkpoint_dir, 'Epoch={0:0=3d}.pt'.format(epoch)))
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model, {'val_acc': val_acc_history, 'train_acc': train_acc_history}
def evaluate(model, dataloader, criterion):
since = time.time()
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, torch.max(labels, 1)[1])
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == torch.max(labels, 1)[1].data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
print('Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))
time_elapsed = time.time() - since
print('Inference Time {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
return model
class Hook():
def __init__(self, module):
self.hook = module.register_backward_hook(self.hook_fn)
def hook_fn(self, module, input, output):
self.input = input
self.output = output
def close(self):
self.hook.remove()
def gradcam(model, image, hook_layer=None):
"""
Gradcam visualiztion of the image using the given model.
Arguments:
model : vgg 19 model to be used for inference and calculating gradients of activations
image : image to visualize gradcam for
hook_layer : layer of the model whose activations are to be used for calculating gradients
"""
# hooking
if hook_layer is None:
hook_layer = model.features[52]
hook = Hook(hook_layer)
# inference and gradient calculation
model.eval()
with torch.enable_grad():
pred = torch.max(model(image.unsqueeze(0).to(device)), 1)
y = pred[1].item()
model.zero_grad()
pred[0].backward()
# ReLU of the avg-pooled linear combination of channels of the output of hooked layer
act_grad = hook.output[0]
avg_pool = nn.functional.avg_pool2d(act_grad, act_grad.shape[-1])
map = torch.zeros(act_grad.shape[-1], act_grad.shape[-1]).to(device)
for i in range(0, 512):
map = map + (avg_pool[0][i].item() * act_grad[0][i])
map = nn.functional.relu(map)
map = zoom(map.cpu(), (224 // map.shape[0], 224 // map.shape[0]), order=1)
# plotting heatmap and image
fig = imshow(image, alpha=0.3, map=map)
return y, map, fig
def predict(img, model_ft):
# Convert image to tensor
tensor = data_transforms['test'](img) # .unsqueeze(0)
# Inference
pred, heatmap, fig = gradcam(model_ft, tensor)
# Print the fig to a BytesIO object
pngImage = io.BytesIO()
FigureCanvas(fig).print_png(pngImage)
# Encode PNG image to base64 string
pngImageB64String = "data:image/png;base64,"
pngImageB64String += base64.b64encode(
pngImage.getvalue()).decode('utf8')
return pred, pngImageB64String