-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathewma_var_calculator.py
86 lines (74 loc) · 4.42 KB
/
ewma_var_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import pandas as pd
from scipy.stats import norm, t
class EWMAVaRCalculator:
def __init__(self, returns, lambda_, alpha, window, nu=None):
self.returns = returns
self.lambda_ = lambda_
self.alpha = np.ndarray([alpha]) if isinstance(alpha, float) or isinstance(alpha, np.ndarray) else np.array(alpha)
self.window = window
self.nu = nu
def EWMA_VaR(self):
VaR_series, ES_series = {}, {}
ewma_volatility = np.zeros(len(self.returns))
ewma_volatility[self.window-1] = np.sqrt(np.var(self.returns[:self.window]))
for i in range(self.window, len(self.returns)):
current_index = self.returns.index[i]
ewma_volatility[i] = np.sqrt(self.lambda_ * ewma_volatility[i-1]**2 + (1 - self.lambda_) * self.returns.iloc[i-1]**2)
z_score = norm.ppf(1 - self.alpha)
z_pdf = norm.pdf(z_score)
VaR_series[current_index] = -z_score * ewma_volatility[i]
ES_series[current_index] = ewma_volatility[i] / self.alpha * z_pdf
return pd.concat([
pd.Series(ewma_volatility[self.window:], name="volatility", index=self.returns.index[self.window:]),
pd.DataFrame.from_dict(VaR_series, orient="index", columns=[f"VaR_{alpha_:.4f}" for alpha_ in self.alpha]),
pd.DataFrame.from_dict(ES_series, orient="index", columns=[f"ES_{alpha_:.4f}" for alpha_ in self.alpha])
], axis=1)
def DCS_EWMA_VaR(self):
VaR_series, ES_series = {}, {}
ewma_volatility = np.zeros(len(self.returns))
ewma_volatility[self.window-1] = np.sqrt(np.var(self.returns[:self.window]))
epsilon = 1e-8
for i in range(self.window, len(self.returns)):
window_returns = self.returns.iloc[i-self.window:i]
current_index = self.returns.index[i]
for t in range(1, self.window):
score = 1 + (window_returns.iloc[t] ** 2 - ewma_volatility[i-1] ** 2) / ewma_volatility[i-1] ** 2
ewma_volatility_squared = self.lambda_ * ewma_volatility[i-1] ** 2 + (1 - self.lambda_) * score * window_returns.iloc[t] ** 2
ewma_volatility[i] = np.sqrt(max(ewma_volatility_squared, epsilon))
z_score = norm.ppf(1 - self.alpha)
z_pdf = norm.pdf(z_score)
VaR_series[current_index] = -z_score * ewma_volatility[i]
ES_series[current_index] = ewma_volatility[i] / self.alpha * z_pdf
return pd.concat([
pd.Series(ewma_volatility[self.window:], name="volatility", index=self.returns.index[self.window:]),
pd.DataFrame.from_dict(VaR_series, orient="index", columns=[f"VaR_{alpha_:.4f}" for alpha_ in self.alpha]),
pd.DataFrame.from_dict(ES_series, orient="index", columns=[f"ES_{alpha_:.4f}" for alpha_ in self.alpha])
], axis=1)
def SD_EWMA_VaR(self):
if self.nu is None:
raise ValueError("Degrees of freedom 'nu' must be provided for SD_EWMA_VaR method.")
VaR_series, ES_series = {}, {}
ewma_volatility = np.zeros(len(self.returns))
initial_volatility = np.sqrt(np.var(self.returns[:self.window]))
ewma_volatility[self.window-1] = initial_volatility
epsilon = 1e-8
A = (1 - self.lambda_) / (1 + 3 * self.nu**-1)
for i in range(self.window, len(self.returns)):
y_t = self.returns.iloc[i]
current_index = self.returns.index[i]
f_t = ewma_volatility[i-1] ** 2
f_t = max(f_t, epsilon)
score = ((self.nu + 1) / (self.nu - 2 + (y_t**2 / f_t))) * y_t**2 - f_t
ewma_volatility_squared = f_t + A * (1 + 3 * self.nu**-1) * score
ewma_volatility[i] = np.sqrt(max(ewma_volatility_squared, epsilon))
t_score = t.ppf(1 - self.alpha, df=self.nu)
t_ES = t.pdf(t_score, df=self.nu) / self.alpha
t_ES *= (self.nu + t_score ** 2) / (self.nu - 1)
VaR_series[current_index] = -t_score * ewma_volatility[i]
ES_series[current_index] = ewma_volatility[i] * t_ES
return pd.concat([
pd.Series(ewma_volatility[self.window:], name="volatility", index=self.returns.index[self.window:]),
pd.DataFrame.from_dict(VaR_series, orient="index", columns=[f"VaR_{alpha_:.4f}" for alpha_ in self.alpha]),
pd.DataFrame.from_dict(ES_series, orient="index", columns=[f"ES_{alpha_:.4f}" for alpha_ in self.alpha])
], axis=1)