-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
78 lines (66 loc) · 2.16 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import json
from psycopg2 import sql
import utils as u
def lambda_handler(event, context):
u.validate(event, ['view', 'uuid', 'type', 'args'])
statistic_uuid = event['uuid']
data_db, meta_db = u.dbs()
data_cur, meta_cur = data_db.cursor(), meta_db.cursor()
def update_status(status):
q = 'UPDATE statistics SET status = (%s) WHERE uuid = (%s)'
meta_cur.execute(q, (status, str(statistic_uuid)))
return status
res = 'failed'
try:
update_status('running')
args = json.loads(event['args'])
value = statistic(event['type'], data_cur, event['view'], args)
q = '''
UPDATE statistics
SET status = 'completed', value = (%s)
WHERE uuid = (%s)
'''
meta_cur.execute(q, (json.dumps(value), str(statistic_uuid)))
res = 'completed'
except Exception as e:
res = update_status('failed')
raise e
finally:
meta_db.commit()
data_db.commit()
meta_cur.close()
data_cur.close()
meta_db.close()
data_db.close()
return {'statusCode': 200, 'body': res}
def statistic(_type, db, view, args):
return {
func_name.split('_', 1)[1].upper(): globals()[func_name]
for func_name in globals().keys() if func_name.startswith('statistic_')
}[_type](db, view, **args)
def statistic_correlation(db, view, x, y, **kwargs):
q = sql.SQL('SELECT corr({x}, {y}) FROM {view}').format(
x=sql.Identifier(x), y=sql.Identifier(y), view=sql.Identifier(view))
db.execute(q)
return {'correlation': db.fetchone()[0]}
def statistic_summary(db, view, x, **kwargs):
q = sql.SQL('''
SELECT
avg({x}) AS mean,
percentile_cont(0.5) WITHIN GROUP (ORDER BY {x}) AS median,
mode() WITHIN GROUP (ORDER BY {x}) AS mode,
min({x}),
max({x}),
stddev({x})
FROM {view}
''').format(x=sql.Identifier(x), view=sql.Identifier(view))
db.execute(q)
res = db.fetchone()
return {
'mean': res[0],
'median': res[1],
'mode': res[2],
'min': res[3],
'max': res[4],
'stddev': res[5],
}