-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfuncts.py
155 lines (141 loc) · 5.66 KB
/
functs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# global imports
import pandas as pd
from matplotlib import pyplot
import numpy as np
import pycwt as wavelet
# graphic cleanup and initialization function
def initPyPlot(h=8):
pyplot.close()
figprops = dict(figsize=(11,h), dpi=96)
fig = pyplot.figure(**figprops)
return pyplot.axes()
# CWT calculation function
# parameters: t=time array, s=data series
def calculateCWT(t,s,steps=32):
mother = wavelet.Morlet(6)
deltaT = t[1] - t[0]
dj = 1 / steps # sub-octaves per octaves
s0 = 2 * deltaT # Starting scale, here 2 months
wave, scales, freqs, coi, fft, fftfreqs = wavelet.cwt(s, deltaT, dj, s0, -1, mother)
# Normalized wavelet power spectra
power = (np.abs(wave)) ** 2
return power,scales,coi,freqs
# find cycle length
# parameters: power spectrum, scales array, minimum length, maximum length
def findCycleLength(power,scales,startLength,stopLength):
idxs=next(i for i, v in enumerate(scales) if v>startLength)
idxe=next(i for i, v in enumerate(scales) if v>stopLength)
xp=power[idxs:idxe,:]
# find the maximums' indices
maxidx=np.argmax(xp,axis=0)+idxs
# return the periods
return scales[maxidx]
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
approaches, such as moving averages techniques.
Parameters
----------
y : array_like, shape (N,)
the values of the time history of the signal.
window_size : int
the length of the window. Must be an odd integer number.
order : int
the order of the polynomial used in the filtering.
Must be less then `window_size` - 1.
deriv: int
the order of the derivative to compute (default = 0 means only smoothing)
Returns
-------
ys : ndarray, shape (N)
the smoothed signal (or it's n-th derivative).
Notes
-----
The Savitzky-Golay is a type of low-pass filter, particularly
suited for smoothing noisy data. The main idea behind this
approach is to make for each point a least-square fit with a
polynomial of high order over a odd-sized window centered at
the point.
Examples
--------
t = np.linspace(-4, 4, 500)
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
ysg = savitzky_golay(y, window_size=31, order=4)
import matplotlib.pyplot as plt
plt.plot(t, y, label='Noisy signal')
plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
plt.plot(t, ysg, 'r', label='Filtered signal')
plt.legend()
plt.show()
References
----------
.. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
Data by Simplified Least Squares Procedures. Analytical
Chemistry, 1964, 36 (8), pp 1627-1639.
.. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
Cambridge University Press ISBN-13: 9780521880688
"""
from math import factorial
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
# plot a time series
def plotTimeSeries(time, ser, title, xlabel, ylabel, imageHeight=4, interpolate=False, width=0.5):
ss=savitzky_golay(ser,63,3) if interpolate else ser
ax=initPyPlot(imageHeight)
ax.plot(time,ss,linewidth=width,antialiased=True)
ax.set_title(title)
ax.set_ylabel(ylabel)
ax.set_xlabel(xlabel)
ax.grid(b=None, which='major', axis='y', alpha=0.2, antialiased=True, c='k', linestyle='-.')
pyplot.show()
# CWT plot
def plotCWT(time,power,scales,coi,freqs,title,xlabel,ylabel,yTicks=None,steps=512,lowerLimit=0,upperLimitDelta=0):
zx = initPyPlot()
# cut out very small powers
LP2=np.log2(power)
LP2=np.clip(LP2,0,np.max(LP2))
# draw the CWT
zx.contourf(time, scales, LP2, steps, cmap=pyplot.cm.gist_ncar)
# draw the COI
coicoi=np.clip(coi,0,coi.max())
zx.fill_between(time,coicoi,scales.max(),alpha=0.2, color='g', hatch='x')
# Y-AXIS labels
if (yTicks):
yt = yTicks
else:
period=1/freqs
yt = 2 ** np.arange(np.ceil(np.log2(period.min())), np.ceil(np.log2(period.max())))
zx.set_yscale('log')
zx.set_yticks(yt)
zx.set_yticklabels(yt)
zx.grid(b=None, which='major', axis='y', alpha=0.2, antialiased=True, c='k', linestyle='-.')
# exclude some periods from view
ylim = zx.get_ylim()
zx.set_ylim(lowerLimit,ylim[1]-upperLimitDelta)
# strings
zx.set_title(title)
zx.set_ylabel(ylabel)
zx.set_xlabel(xlabel)
# print all
pyplot.show()