-
Notifications
You must be signed in to change notification settings - Fork 4
/
map2d.py
918 lines (851 loc) · 35.5 KB
/
map2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
from __future__ import print_function
from matplotlib.pyplot import imread
from functools import partial
import numpy as np
import os
import threading
from yaml import load
from circular_index import CircularIndexCreator
import pose2d
from numba import njit
from math import sqrt, floor, log
@njit(fastmath=True, cache=True)
def compiled_occupied_points(occupancy, thresh):
result = []
for i in range(occupancy.shape[0]):
for j in range(occupancy.shape[1]):
if occupancy[i, j] > thresh:
result.append([i, j])
return result
# in i_j_ frame
@njit(fastmath=True, cache=True)
def compiled_sdf_math(occupied_points_ij, init):
for i in range(init.shape[0]):
for j in range(init.shape[1]):
minnorm = init[i, j]
for k in range(len(occupied_points_ij)):
point = occupied_points_ij[k]
pi = point[0]
pj = point[1]
norm = sqrt((pi - i) ** 2 + (pj - j) ** 2)
minnorm = minnorm if minnorm < norm else norm
init[i, j] = minnorm
# in i_j_ frame
@njit(fastmath=True, cache=True)
def compiled_tsdf_math(occupied_points_ij, init, max_dist_ij):
for k in range(len(occupied_points_ij)):
point = occupied_points_ij[k]
pi = point[0]
pj = point[1]
irange = range(
max(pi - max_dist_ij, 0), min(pi + max_dist_ij, init.shape[0] - 1)
)
jrange = range(
max(pj - max_dist_ij, 0), min(pj + max_dist_ij, init.shape[1] - 1)
)
for i in irange:
for j in jrange:
norm = sqrt((pi - i) ** 2 + (pj - j) ** 2)
if norm < init[i, j]:
init[i, j] = norm
@njit(fastmath=True, cache=True)
def compiled_dijkstra(
open_, not_in_to_visit, kEdgeLength, extra_costs, tentative, goal_ij
):
tentative = tentative[:]
tentative[goal_ij[0], goal_ij[1]] = 0
to_visit = [(goal_ij[0], goal_ij[1])]
not_in_to_visit[goal_ij[0], goal_ij[1]] = False
neighbor_offsets = [[0, 1], [1, 0], [0, -1], [-1, 0]]
len_i = tentative.shape[0]
len_j = tentative.shape[1]
while to_visit:
# Make the current node that which has the smallest tentative values
smallest_tentative_value = tentative[to_visit[0][0], to_visit[0][1]]
smallest_tentative_id = 0
for i in range(len(to_visit)):
node_idx = to_visit[i]
value = tentative[node_idx[0], node_idx[1]]
if value < smallest_tentative_value:
smallest_tentative_value = value
smallest_tentative_id = i
current = to_visit.pop(smallest_tentative_id)
# Iterate over 4 neighbors
for n in range(4):
# Indices for the neighbours
neighbor_idx = (
current[0] + neighbor_offsets[n][0],
current[1] + neighbor_offsets[n][1],
)
# Find which neighbors are open (exclude forbidden/explored areas of the grid)
if neighbor_idx[0] < 0:
continue
if neighbor_idx[0] >= len_i:
continue
if neighbor_idx[1] < 0:
continue
if neighbor_idx[1] >= len_j:
continue
if not open_[neighbor_idx[0], neighbor_idx[1]]:
continue
# costly regions are expensive to navigate through (costlier edges)
# these extra costs have to be reciprocal in order for dijkstra to function
# cost(a to b) == cost(b to a), hence the average between the node penalty values.
# Find which neighbors are open (exclude forbidden/explored areas of the grid)
edge_extra_costs = 0.5 * (
extra_costs[neighbor_idx[0], neighbor_idx[1]]
+ extra_costs[current[0], current[1]]
)
new_cost = (
tentative[current[0], current[1]] + kEdgeLength + edge_extra_costs
)
if new_cost < tentative[neighbor_idx[0], neighbor_idx[1]]:
tentative[neighbor_idx[0], neighbor_idx[1]] = new_cost
# Add neighbors to to_visit if not already present
if not_in_to_visit[neighbor_idx[0], neighbor_idx[1]]:
to_visit.append(neighbor_idx)
not_in_to_visit[neighbor_idx[0], neighbor_idx[1]] = False
# Close the current node
open_[current[0], current[1]] = False
return tentative
@njit(fastmath=True, cache=True)
def compiled_reverse_raytrace(ij_hits, ij_orig, init):
o_i = ij_orig[0]
o_j = ij_orig[1]
for k in range(len(ij_hits)):
ij = ij_hits[k]
i = ij[0]
j = ij[1]
# length of the ray in increments
d_i = i - o_i
d_j = j - o_j
sign_i = 1 if d_i >= 0 else -1
sign_j = 1 if d_j >= 0 else -1
i_len = sign_i * d_i
j_len = sign_j * d_j
if i_len >= j_len:
ray_inc = i_len
else:
ray_inc = j_len
if ray_inc == 0:
continue
# calculate increments
i_inc = d_i * 1. / ray_inc
j_inc = d_j * 1. / ray_inc
# max amount of increments before crossing the grid border
if i_inc == 0:
max_inc = (
floor((init.shape[1] - 1 - o_j) / j_inc)
if sign_j >= 0
else floor(o_j / -j_inc)
)
elif j_inc == 0:
max_inc = (
floor((init.shape[0] - 1 - o_i) / i_inc)
if sign_i >= 0
else floor(o_i / -i_inc)
)
else:
max_i_inc = (
floor((init.shape[0] - 1 - o_i) / i_inc)
if sign_i >= 0
else floor(o_i / -i_inc)
)
max_j_inc = (
floor((init.shape[1] - 1 - o_j) / j_inc)
if sign_j >= 0
else floor(o_j / -j_inc)
)
max_inc = max_i_inc if max_i_inc <= max_j_inc else max_j_inc
if ray_inc < max_inc:
max_inc = ray_inc
# Trace a ray
n_i = o_i + 0
n_j = o_j + 0
for n in range(1, max_inc):
init[
int(n_i), int(n_j + j_inc)
] = 0 # the extra assignments make the ray 'thicker'
n_i += i_inc
init[int(n_i), int(n_j)] = 0
n_j += j_inc
init[int(n_i), int(n_j)] = 0
# set occupancy to 1 for ray hits (after the rest to avoid erasing hits)
for k in range(len(ij_hits)):
ij = ij_hits[k]
i = ij[0]
j = ij[1]
if (
i > 0
and j > 0
and i != o_i
and j != o_j
and i < init.shape[0]
and j < init.shape[1]
):
init[i, j] = 1
@njit(fastmath=True, cache=True)
def compiled_insert_scan(hits_and_misses, prior, phit, pmiss):
for i in range(hits_and_misses.shape[0]):
for j in range(hits_and_misses.shape[1]):
h_or_m = hits_and_misses[i, j]
if h_or_m == 1.: # hit
pz = phit
elif h_or_m == 0.: # miss
pz = pmiss
else:
continue
pold = prior[i, j]
# calculate posterior in-place
prior[i, j] = pz * pold / (pz * pold + (1. - pz) * (1. - pold))
return prior
class Map2D(object):
def __init__(self, folder=None, name=None):
print("WARNING: Map2D is deprecated in favor of CMap2D")
self.occupancy_ = np.ones((100, 100)) * 0.5
self.resolution_ = 0.01
self.origin = np.array([0., 0.])
self.thresh_occupied_ = 0.9
self.thresh_free = 0.1
self.HUGE = 1e10
self.circular_index_creator = CircularIndexCreator() # Tool to quickly create gridmap circles
if folder is None or name is None:
return
# Load map from file
folder = os.path.expanduser(folder)
yaml_file = os.path.join(folder, name + ".yaml")
print("Loading map definition from {}".format(yaml_file))
with open(yaml_file) as stream:
mapparams = load(stream)
map_file = os.path.join(folder, mapparams["image"])
print("Map definition found. Loading map from {}".format(map_file))
mapimage = imread(map_file)
self.occupancy_ = (
1. - mapimage.T[:, ::-1] / 254.
) # (0 to 1) 1 means 100% certain occupied
self.resolution_ = mapparams["resolution"] # [meters] side of 1 grid square
self.origin = mapparams["origin"][
:2
] # [meters] x y coordinates of point at i = j = 0
if mapparams["origin"][2] != 0:
raise ValueError(
"Map files with a rotated frame (origin.theta != 0) are not"
" supported. Setting the value to 0 in the MAP_NAME.yaml file is one way to"
" resolve this."
)
self.thresh_occupied_ = mapparams["occupied_thresh"]
self.thresh_free = mapparams["free_thresh"]
self.HUGE = 100 * np.prod(
self.occupancy_.shape
) # bigger than any possible distance in the map
def occupancy(self):
return self.occupancy_
def thresh_occupied(self):
return self.thresh_occupied_
def resolution(self):
return self.resolution_
def from_msg(self, msg):
self.origin = np.array([msg.info.origin.position.x, msg.info.origin.position.y])
self.resolution_ = msg.info.resolution
self.occupancy_ = (
np.array(msg.data).reshape((msg.info.height, msg.info.width)).T * 0.01
)
self.HUGE = 100 * np.prod(
self.occupancy_.shape
) # bigger than any possible distance in the map
def from_scan(self, scan, resolution, limits):
""" Creating a map from a scan places the x y origin in the center of the grid,
and generates the occupancy field from the laser data.
"""
self.origin = limits[:, 0]
self.resolution_ = resolution
self.thresh_occupied_ = 0.9
self.thresh_free = 0.1
angles = np.arange(scan.angle_min, scan.angle_max, scan.angle_increment)
xy_hits = (np.array(scan.ranges) * np.array([np.cos(angles), np.sin(angles)])).T
ij_hits = self.xy_to_ij(xy_hits, clip_if_outside=False)
self.occupancy_ = 0.5 * np.ones(
((limits[:, 1] - limits[:, 0]) / resolution).astype(int)
)
ij_laser_orig = (-self.origin / self.resolution_).astype(int)
compiled_reverse_raytrace(ij_hits, ij_laser_orig, self.occupancy_)
def xy_to_ij(self, x, y=None, clip_if_outside=True):
# if no y argument is given, assume x is a [...,2] array with xy in last dim
"""
for each x y coordinate, return an i j cell index
Examples
--------
>>> a = Map2D()
>>> a.xy_to_ij(0.01, 0.02)
(1, 2)
>>> a.xy_to_ij([0.01, 0.02])
array([1, 2])
>>> a.xy_to_ij([[0.01, 0.02], [-0.01, 0.]])
array([[1, 2],
[0, 0]])
"""
if y is None:
return np.concatenate(
self.xy_to_ij(
*np.split(np.array(x), 2, axis=-1), clip_if_outside=clip_if_outside
),
axis=-1,
)
i = (x - self.origin[0]) / self.resolution_
j = (y - self.origin[1]) / self.resolution_
i = i.astype(int)
j = j.astype(int)
if clip_if_outside:
i_gt = i >= self.occupancy_.shape[0]
i_lt = i < 0
j_gt = j >= self.occupancy_.shape[1]
j_lt = j < 0
if isinstance(i, np.ndarray):
i[i_gt] = self.occupancy_.shape[0] - 1
i[i_lt] = 0
j[j_gt] = self.occupancy_.shape[1] - 1
j[j_lt] = 0
else:
if i_gt:
i = self.occupancy_.shape[0] - 1
if i_lt:
i = 0
if j_gt:
j = self.occupancy_.shape[1] - 1
if j_lt:
j = 0
return i, j
def xy_to_floatij(self, x):
x = np.array(x)
return (x - self.origin) / self.resolution_
def ij_to_xy(self, i, j=None):
"""
Examples
--------
>>> a = Map2D()
>>> a.ij_to_xy(1, 2)
(0.01, 0.02)
>>> a.ij_to_xy([1,2])
array([0.01, 0.02])
>>> a.ij_to_xy([[1,2], [-1, 0]])
array([[ 0.01, 0.02],
[-0.01, 0. ]])
"""
# if no j argument is given, assume i is a [...,2] array with ij in last dim
if j is None:
return np.concatenate(
self.ij_to_xy(*np.split(np.array(i), 2, axis=-1)), axis=-1
)
x = i * self.resolution_ + self.origin[0]
y = j * self.resolution_ + self.origin[1]
return x, y
def is_inside_ij(self, i, j=None):
from functools import reduce
"""
Examples
--------
>>> a = Map2D()
>>> a.is_inside_ij(1, 2)
True
>>> a.is_inside_ij([1,2])
array(True)
>>> a.is_inside_ij([[1,2]])
array([ True])
>>> a.is_inside_ij([[1,a.occupancy_.shape[1]]])
array([False])
>>> a.is_inside_ij([[a.occupancy_.shape[0],2]])
array([False])
>>> a.is_inside_ij([[1,2], [-1, 0]])
array([ True, False])
"""
if j is None:
return self.is_inside_ij(*np.split(np.array(i), 2, axis=-1))[..., 0]
return reduce(
np.logical_and,
[i > 0, i < self.occupancy_.shape[0], j > 0, j < self.occupancy_.shape[1]],
)
def as_square_graph(self):
print()
def square(size):
rng = np.arange(-size, size)
sz = np.ones(rng.shape) * size
# indices along perimeter
np.block([[rng, rng, sz, -sz], [sz, -sz, rng, rng]])
# indices within square
ii, jj = np.meshgrid(rng, rng)
return np.stack((ii.flatten(), jj.flatten()), axis=-1).T
def as_sdf(self, raytracer=None):
NUMBA = False
RANGE_LIBC = True
occupied_points_ij = np.array(self.as_occupied_points_ij())
min_distances = np.ones(self.occupancy_.shape) * self.HUGE
if NUMBA:
compiled_sdf_math(occupied_points_ij, min_distances)
if RANGE_LIBC:
if raytracer is None:
import range_libc
pyomap = range_libc.PyOMap(np.ascontiguousarray(self.occupancy_.T >= self.thresh_occupied_))
rm = range_libc.PyRayMarching(pyomap, self.occupancy_.shape[0])
min_distances = np.ascontiguousarray(np.zeros_like(self.occupancy_, dtype=np.float32))
rm.get_dist(min_distances)
else:
min_distances = raytracer.get_dist()
# Change from i, j units to x, y units [meters]
min_distances = min_distances * self.resolution_
# Switch sign for occupied and unkown points (*signed* distance field)
min_distances[self.occupancy_ > self.thresh_free] *= -1.
return min_distances
def as_tsdf(self, max_dist_m):
max_dist_ij = max_dist_m / self.resolution_
occupied_points_ij = np.array(self.as_occupied_points_ij())
min_distances = np.ones(self.occupancy_.shape) * max_dist_ij
compiled_tsdf_math(occupied_points_ij, min_distances, max_dist_ij)
# Change from i, j units to x, y units [meters]
min_distances = min_distances * self.resolution_
# Switch sign for occupied and unkown points (*signed* distance field)
min_distances[self.occupancy_ > self.thresh_free] *= -1.
return min_distances
def as_occupied_points_ij(self, numba=False):
if numba:
return compiled_occupied_points(self.occupancy_, self.thresh_occupied_)
return np.array(np.where(self.occupancy_ > self.thresh_occupied_)).T
def as_coarse_map2d(self):
from copy import deepcopy
coarse = deepcopy(self)
coarse.occupancy_ = np.max(
np.stack(
(
self.occupancy_[::2, ::2],
self.occupancy_[1::2, ::2],
self.occupancy_[::2, 1::2],
self.occupancy_[1::2, 1::2],
),
axis=-1,
),
axis=-1,
)
coarse.resolution_ = self.resolution_ * 2
return coarse
def dijkstra_deprecated(self, goal_ij, mask=None, extra_costs=None):
kEdgeLength = 1 * self.resolution_ # meters
# Initialize bool arrays
open_ = np.ones(self.occupancy_.shape, dtype=bool)
not_in_to_visit = np.ones(self.occupancy_.shape, dtype=bool)
# Mask (close) unattainable nodes
if mask is None:
mask = self.occupancy_ >= self.thresh_free
open_[mask] = False
# initialize extra costs
if extra_costs is None:
extra_costs = 0
# initialize field to large value
tentative = np.ones(self.occupancy_.shape) * self.HUGE
# Start at the goal location
tentative[tuple(goal_ij)] = 0
to_visit = [goal_ij]
not_in_to_visit[tuple(goal_ij)] = False
while to_visit:
# Make the current node that which has the smallest tentative values
smallest_tentative = np.argmin(tentative[tuple(np.array(to_visit).T)])
current = to_visit.pop(smallest_tentative)
# Indices for the neighbours
neighbors = current + np.array([[0, 1], [1, 0], [0, -1], [-1, 0]])
# costly regions are expensive to navigate through (costlier edges)
# these extra costs have to be reciprocal in order for dijkstra to function
# cost(a to b) == cost(b to a), hence the average between the node penalty values.
edge_extra_costs = 0.5 * (
extra_costs[tuple(neighbors.T)] + extra_costs[tuple(current)]
)
# Find which neighbors are open (exclude forbidden/explored areas of the grid)
neighbors_are_open = open_[tuple(neighbors.T)]
open_neighbors_idx = neighbors[neighbors_are_open]
# Update neighbor values if smaller
tentative[tuple(open_neighbors_idx.T)] = np.minimum(
tentative[tuple(current)]
+ kEdgeLength
+ edge_extra_costs[neighbors_are_open],
tentative[tuple(open_neighbors_idx.T)],
)
# Close the current node
open_[tuple(current)] = False
# Add current node neighbors to to_visit
new_open_neighbors = open_neighbors_idx[
not_in_to_visit[tuple(open_neighbors_idx.T)]
]
not_in_to_visit[tuple(new_open_neighbors.T)] = False
to_visit += list(new_open_neighbors)
return tentative
def dijkstra(self, goal_ij, mask=None, extra_costs=None):
kEdgeLength = 1 * self.resolution_ # meters
# Initialize bool arrays
open_ = np.ones(self.occupancy_.shape, dtype=bool)
not_in_to_visit = np.ones(self.occupancy_.shape, dtype=bool)
# Mask (close) unattainable nodes
if mask is None:
mask = self.occupancy_ >= self.thresh_free
open_[mask] = False
# initialize extra costs
if extra_costs is None:
extra_costs = np.zeros_like(self.occupancy_)
# initialize field to large value
tentative = np.ones(self.occupancy_.shape) * self.HUGE
# Start at the goal location
tentative[tuple(goal_ij)] = 0
to_visit = [goal_ij]
not_in_to_visit[tuple(goal_ij)] = False
return compiled_dijkstra(
open_, not_in_to_visit, kEdgeLength, extra_costs, tentative, goal_ij
)
def as_closed_obst_vertices(self):
# convert map into clusters
#
import cv2
im = cv2.imread('test.jpg')
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(imgray,127,255,0)
image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
pass
def render_agents_in_lidar(self, ranges, angles, agents, lidar_ij):
""" Takes a list of agents (shapes + position) and renders them into the occupancy grid """
centers_i = [0]
centers_j = [0]
radii_ij = [np.inf]
for agent in agents:
if agent.type != "legs":
raise NotImplementedError
left_leg_pose2d_in_map_frame, right_leg_pose2d_in_map_frame = agent.get_legs_pose2d_in_map()
llc_ij = self.xy_to_ij(left_leg_pose2d_in_map_frame[:2])
rlc_ij = self.xy_to_ij(right_leg_pose2d_in_map_frame[:2])
leg_radius_ij = agent.leg_radius / self.resolution_
# circle centers in 'lidar' frame (frame centered at lidar pos, but not rotated,
# as angles in array are already rotated according to sensor angle in map frame)
centers_i.append(llc_ij[0] - lidar_ij[0])
centers_j.append(llc_ij[1] - lidar_ij[1])
radii_ij.append(leg_radius_ij)
centers_i.append(rlc_ij[0] - lidar_ij[0])
centers_j.append(rlc_ij[1] - lidar_ij[1])
radii_ij.append(leg_radius_ij)
# switch to polar coordinate to find intersection between each ray and agent (circles)
angles = np.array(angles)
ranges = np.array(ranges)
radii_ij = np.array(radii_ij)
centers_r_sq = np.array(centers_i)**2 + np.array(centers_j)**2
centers_l = np.arctan2(centers_j, centers_i)
# Circle in polar coord: r^2 - 2*r*r0*cos(phi-lambda) + r0^2 = R^2
# Solve equation for r at angle phi in polar coordinates, of circle of center (r0, lambda)
# and radius R. -> 2 solutions for r knowing r0, phi, lambda, R:
# r = r0*cos(phi-lambda) - sqrt( r0^2*cos^2(phi-lambda) - r0^2 + R^2 )
# r = r0*cos(phi-lambda) + sqrt( r0^2*cos^2(phi-lambda) - r0^2 + R^2 )
# solutions are real only if term inside sqrt is > 0
first_term = np.sqrt(centers_r_sq) * np.cos(angles[:,None] - centers_l)
sqrt_inner = centers_r_sq * np.cos(angles[:,None] - centers_l)**2 - centers_r_sq + radii_ij**2
sqrt_inner[sqrt_inner < 0] = np.inf
radii_solutions_a = first_term - np.sqrt(sqrt_inner)
radii_solutions_b = first_term + np.sqrt(sqrt_inner)
radii_solutions_a[radii_solutions_a < 0] = np.inf
radii_solutions_b[radii_solutions_b < 0] = np.inf
# range is the smallest range between original range, and intersection range with each agent
all_sol = np.hstack([radii_solutions_a, radii_solutions_b])
all_sol = all_sol * self.resolution_ # from ij coordinates back to xy
all_sol[:,0] = ranges
final_ranges = np.min(all_sol, axis=1)
ranges[:] = final_ranges
def render_agents_in_occupancy(self, agents):
""" Takes a list of agents (shapes + position) and renders them into the occupancy grid """
result_occupancy_grid = self.occupancy_.copy()
for agent in agents:
if agent.type != "legs":
raise NotImplementedError
left_leg_pose2d_in_map_frame, right_leg_pose2d_in_map_frame = agent.get_legs_pose2d_in_map()
llc_ij = self.xy_to_ij(left_leg_pose2d_in_map_frame[:2])
rlc_ij = self.xy_to_ij(right_leg_pose2d_in_map_frame[:2])
# get circle 2d index of size r for each leg
# TODO rotated stencil if ellipse
circle_i, circle_j = self.circular_index_creator.make_circular_index(
agent.leg_radius, self.resolution_)
lstencil_i = circle_i + llc_ij[0]
lstencil_j = circle_j + llc_ij[1]
rstencil_i = circle_i + rlc_ij[0]
rstencil_j = circle_j + rlc_ij[1]
stencil_i = np.hstack([lstencil_i, rstencil_i])
stencil_j = np.hstack([lstencil_j, rstencil_j])
# filter invalid indices
mask = self.is_inside_ij(stencil_i, stencil_j)
stencil_i = stencil_i[mask]
stencil_j = stencil_j[mask]
# paint stencil into map
result_occupancy_grid[(stencil_i, stencil_j)] = 1
# from matplotlib import pyplot as plt
# plt.imshow(result_occupancy_grid)
# plt.plot(stencil_i[0], stencil_j[1], 'r-x')
# a_ij = self.xy_to_ij(m_a_T[:2])
# plt.plot(a_ij[0], a_ij[1], 'r-x')
# plt.show()
return result_occupancy_grid
def show(self):
gridshow(self.occupancy_)
class LocalMap2D(Map2D):
""" A fixed sized Map2D built from several observations,
which remains centered around the current robot pose
NOT THREADSAFE
"""
def __init__(
self, limits, resolution, sensor_model=None, max_observations=100
): # limits, resolution in meters
Map2D.__init__(self)
self.limits = limits
self.origin = limits[:, 0]
self.resolution_ = resolution
self.occupancy_ = 0.5 * np.ones(
((self.limits[:, 1] - self.limits[:, 0]) / self.resolution_).astype(int)
)
self.thresh_occupied_ = 0.9
self.thresh_free = 0.1
self.N_MAX_OBSERVATIONS = max_observations
self.observations = [None] * self.N_MAX_OBSERVATIONS
self.poses = [None] * self.N_MAX_OBSERVATIONS
self.base_poses = [None] * self.N_MAX_OBSERVATIONS
self.n_observations = 0
if sensor_model is None:
sensor_model = {"p_hit": 0.75, "p_miss": 0.25}
self.sensor_model = sensor_model
def ci_(self, i, n_observations=None, allow_overflow=False):
""" converts from relative index i to circular index ci
i = 0 refers to the latest observation
i = -n refers to the nth latest observation
"""
if n_observations is None:
n_observations = self.n_observations
if i > 0:
raise IndexError
if i <= -self.N_MAX_OBSERVATIONS and not allow_overflow:
raise IndexError
if i <= -n_observations and not allow_overflow:
raise IndexError
return (n_observations - 1 + i) % self.N_MAX_OBSERVATIONS
def all_cis(self):
""" returns a list of all available observation circular indices,
from oldest to newest """
return [
self.ci_(i)
for i in range(1 - min(self.n_observations, self.N_MAX_OBSERVATIONS), 1)
]
def add_observation(self, scan, pose, base_pose=None):
""" Adds a scan to the current observation list """
self.n_observations += 1
self.observations[self.ci_(0)] = scan
self.poses[self.ci_(0)] = pose
self.base_poses[self.ci_(0)] = base_pose
return
def generate(self):
""" Generates latest occupancy and cross_entropy_error from observations """
if self.n_observations == 0:
return None
current_pose = self.base_poses[self.ci_(0)]
# Combine observations
inc_occupancy = self.occupancy_ * 1.
errors = []
r = np.array(
[ # rotation for oTa, o = odom frame, a = current_scan frame
[np.cos(current_pose[2]), np.sin(current_pose[2])],
[-np.sin(current_pose[2]), np.cos(current_pose[2])],
]
)
for ci in self.all_cis():
# get relative pose
rel_pose = self.poses[ci] - current_pose
rel_pose[:2] = np.sum(
r * rel_pose[:2], axis=-1
) # rel_pose x y in current_scan frame
# reverse raytrace scan
scan = self.observations[ci]
hits_and_misses = self.occupancy_ * 1.
self.reverse_raytrace_scan(scan, rel_pose, hits_and_misses)
# reinforce latest scan?
if ci == self.ci_(0):
phit = 0.999
else:
phit = self.sensor_model["p_hit"]
# merge scan with history
compiled_insert_scan(
hits_and_misses,
inc_occupancy,
phit=phit,
pmiss=self.sensor_model["p_miss"],
)
# fill variables
result = Map2D()
result.occupancy_ = inc_occupancy
result.resolution_ = self.resolution_
result.origin = self.origin
result.thresh_occupied_ = self.thresh_occupied_
result.thresh_free = self.thresh_free
return result
def reverse_raytrace_scan(self, scan, pose, occupancy):
""" Generates the occupancy field from the laser data.
this returns a map with the same pose and dimensions as this one,
however the occupancy is based on the hits and misses of the laser scan
the occupancy values are 0 for misses, 1 for hits.
pose: scan pose in map frame
"""
ij_hits, ij_laser_orig = self.scan_in_ij_frame(
scan, pose, handle_no_return_as_far=True
)
compiled_reverse_raytrace(ij_hits, ij_laser_orig, occupancy)
return occupancy
def scan_in_ij_frame(self, scan, pose, handle_no_return_as_far=False):
angles = (
np.arange(scan.angle_min, scan.angle_max, scan.angle_increment)[:len(scan.ranges)]
+ pose[2]
)
if handle_no_return_as_far:
ranges = [
1000. if r == 0 else r for r in scan.ranges
] # find far away points
else:
ranges = scan.ranges
xy_hits = (
np.array(ranges) * np.array([np.cos(angles), np.sin(angles)])
).T + pose[:2]
ij_hits = self.xy_to_ij(xy_hits, clip_if_outside=False)
ij_laser_orig = (
(-self.origin / self.resolution_) # ij_coordinates of point where x, y = 0
+ pose[:2]
).astype(int)
return ij_hits, ij_laser_orig
def insert_scan(self, hits_and_misses, prior):
""" Instead of moving the scan to the map pose,
the previous map gets moved to the new scan pose"""
phit = self.sensor_model["p_hit"]
pmiss = self.sensor_model["p_miss"]
hits_and_misses
p_measured = hits_and_misses[:]
p_measured[
p_measured == 0
] = (
pmiss
) # TODO: could make sense to update pmiss in raytrace: having lower prob where several beams pass
p_measured[p_measured == 1] = phit
posterior = (
p_measured * prior / (p_measured * prior + (1 - p_measured) * (1 - prior))
)
return posterior
def cross_entropy_error(self, scan, pose, prior):
ij_hits, ij_laser_orig = self.scan_in_ij_frame(scan, pose)
valid_mask = np.all(
np.logical_and(ij_hits >= 0, ij_hits < self.occupancy_.shape), axis=-1
)
ij_hits_in_map = ij_hits[valid_mask]
priors = prior[tuple(ij_hits_in_map.T)]
pz = self.sensor_model["p_hit"]
error = -priors * np.log(pz) - (1 - priors) * np.log(1 - pz)
return error, ij_hits_in_map
def copy(self):
"""
Meant to be used with, for example, the case where the localmap has
observations added from one thread at high rate, and must have .generate() called
from another thread. This copy will efficiently ensure the observations are frozen.
BEWARE, changing the observations themselves will also affect the original! Shallow copy
"""
# deepcopy everything except observations
copy = LocalMap2D(self.limits, self.resolution_)
copy.limits = self.limits * 1. # deep copy
copy.origin = self.origin * 1.
copy.resolution_ = self.resolution_
copy.thresh_occupied_ = self.thresh_occupied_
copy.thresh_free = self.thresh_free
copy.N_MAX_OBSERVATIONS = self.N_MAX_OBSERVATIONS
copy.observations = self.observations[:] # BEWARE: shallow copy for efficiency
copy.poses = self.poses[:]
copy.base_poses = self.base_poses[:]
copy.n_observations = self.n_observations
copy.sensor_model = self.sensor_model.copy() # deep copy
copy.occupancy_ = self.occupancy_ * 1.
return copy
def gridshow(*args, **kwargs):
""" utility function for showing 2d grids in matplotlib,
wrapper around pyplot.imshow
use 'extent' = [-1, 1, -1, 1] to change the axis values """
from matplotlib import pyplot as plt
if not 'origin' in kwargs:
kwargs['origin'] = 'lower'
if not 'cmap' in kwargs:
kwargs['cmap'] = plt.cm.Greys
return plt.imshow(*(arg.T if i == 0 else arg for i, arg in enumerate(args)), **kwargs)
class SimAgent(object):
def __init__(self):
self.pose_2d_in_map_frame = np.array([0, 0, 0])
self.type = "legs"
self.state = None
self.leg_radius = 0.03 # [m]
def get_legs_pose2d_in_map(self):
m_a_T = self.pose_2d_in_map_frame
if self.type == "legs":
leg_radius = self.leg_radius # [m]
leg_side_offset = 0.1 # [m]
leg_side_amplitude = 0.1 # [m] half amplitude
leg_front_amplitude = 0.3 # [m]
# get position of each leg w.r.t agent (x is 'forward')
# travel is a sine function relative to how fast the agent is moving in x y
front_travel = leg_front_amplitude * np.cos(
self.state[0] * 2. / leg_front_amplitude # assuming dx = 2 dphi / A
+ self.state[2] # adds a little movement when rotating
)
side_travel = leg_side_amplitude * np.cos(
self.state[1] * 2. / leg_side_amplitude
+ self.state[2]
)
right_leg_pose2d_in_agent_frame = np.array([
front_travel,
side_travel + leg_side_offset,
0])
left_leg_pose2d_in_agent_frame = -right_leg_pose2d_in_agent_frame
left_leg_pose2d_in_map_frame = pose2d.apply_tf_to_pose(
left_leg_pose2d_in_agent_frame, m_a_T)
right_leg_pose2d_in_map_frame = pose2d.apply_tf_to_pose(
right_leg_pose2d_in_agent_frame, m_a_T)
return left_leg_pose2d_in_map_frame, right_leg_pose2d_in_map_frame
else:
raise NotImplementedError
if __name__ == "__main__":
import doctest
doctest.testmod()
if __name__ == "test render agent":
import numpy as np
from matplotlib import pyplot as plt
plt.ion()
plt.figure()
for i in range(100):
plt.cla()
plt.scatter([0], [0])
r0 = 1.5
lmbda = np.random.random() * np.pi * 2
r0sq = r0**2
R = np.random.random()
phi = np.linspace(0, 2*np.pi, 1000)
first_term = r0 * np.cos(phi - lmbda)
sqrt_inner = r0sq * np.cos(phi - lmbda)**2 - r0sq + R**2
sqrt_inner[sqrt_inner < 0] = np.inf
radii_solutions_a = first_term - np.sqrt(sqrt_inner)
radii_solutions_b = first_term + np.sqrt(sqrt_inner)
radii_solutions_a[radii_solutions_a < 0] = np.inf
radii_solutions_b[radii_solutions_b < 0] = np.inf
r = np.minimum(radii_solutions_a, radii_solutions_b)
x = r * np.cos(phi)
y = r * np.sin(phi)
plt.plot(x, y)
phiext = [
lmbda - np.arccos( np.sqrt(r0sq - R**2) / r0 ),
lmbda + np.arccos( np.sqrt(r0sq - R**2) / r0 ),
# lmbda + np.arccos( - np.sqrt(r0sq - R**2) / r0 ),
# lmbda - np.arccos( - np.sqrt(r0sq - R**2) / r0 ),
]
colors = ['r', 'g']
for ph, c in zip(phiext, colors):
x = [0, r0 * np.cos(ph)]
y = [0, r0 * np.sin(ph)]
plt.plot(x, y, '-'+c)
plt.xlim([-2,2])
plt.ylim([-2,2])
plt.show()
plt.pause(0.1)