forked from bytedance/lightseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathls_gpt2.py
119 lines (91 loc) · 3.8 KB
/
ls_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import time
import argparse
import torch
import numpy as np
import lightseq.inference as lsi
from transformers import GPT2Tokenizer, GPT2LMHeadModel
def ls_gpt2(model, inputs):
torch.cuda.synchronize()
start_time = time.perf_counter()
generated_ids = model.sample(inputs)
torch.cuda.synchronize()
end_time = time.perf_counter()
return generated_ids, end_time - start_time
def hf_gpt2(model, inputs, tokenizer):
inputs = inputs.to("cuda:0")
torch.cuda.synchronize()
start_time = time.perf_counter()
generated_ids = model.generate(
inputs, max_length=50, pad_token_id=tokenizer.eos_token_id
)
torch.cuda.synchronize()
end_time = time.perf_counter()
return generated_ids, end_time - start_time
def ls_generate(model, tokenizer, inputs):
print("=========lightseq=========")
print("lightseq generating...")
ls_res_ids, ls_time = ls_gpt2(model, inputs)
ls_res = tokenizer.batch_decode(ls_res_ids, skip_special_tokens=True)
print(f"lightseq time: {ls_time}s")
print("lightseq results:")
for sent in ls_res:
print(sent)
def hf_generate(model, tokenizer, inputs):
print("=========huggingface=========")
print("huggingface generating...")
hf_res_ids, hf_time = hf_gpt2(model, inputs, tokenizer)
hf_res = tokenizer.batch_decode(hf_res_ids, skip_special_tokens=True)
print(f"huggingface time: {hf_time}s")
print("huggingface results:")
for sent in hf_res:
print(sent)
def warmup(ls_tokenizer, hf_tokenizer, ls_model, hf_model, sentences):
ls_inputs = ls_tokenizer(sentences, return_tensors="pt", padding=True)["input_ids"]
hf_inputs = hf_tokenizer(sentences, return_tensors="pt", padding=True)["input_ids"]
ls_generate(ls_model, ls_tokenizer, ls_inputs)
hf_generate(hf_model, hf_tokenizer, hf_inputs)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--user_input", action="store_true")
args = parser.parse_args()
print("initializing gpt tokenizer...")
ls_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# lightseq use len(tokenizer) as pad_token in default
ls_tokenizer.add_special_tokens({"pad_token": "[PAD]"})
print(f"lightseq tokenizer pad token id: {ls_tokenizer.pad_token_id}")
hf_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# use EOS as PAD for huggingface to avoid warning according to https://huggingface.co/blog/how-to-generate while avoid reshaping the model embedding
hf_tokenizer.pad_token = hf_tokenizer.eos_token
print(f"huggingface tokenizer pad token id: {hf_tokenizer.pad_token_id}")
print("creating lightseq model...")
ls_model = lsi.Gpt("lightseq_gpt2_base.hdf5", max_batch_size=16)
print("creating huggingface model...")
hf_model = GPT2LMHeadModel.from_pretrained("gpt2")
hf_model.to("cuda:0")
# lightseq gpt perplexity supports batch infer with different lengths,
# but sampling doesn't support
sentences = [
"My name is GPT",
"My name is GPT",
"My name is GPT",
"My name is GPT",
]
print("====================START warmup====================")
warmup(ls_tokenizer, hf_tokenizer, ls_model, hf_model, sentences)
print("====================END warmup====================")
while True:
if args.user_input:
sentences = [input("input the masked sentence:\n")]
print("tokenizing the sentences...")
ls_inputs = ls_tokenizer(sentences, return_tensors="pt", padding=True)[
"input_ids"
]
hf_inputs = hf_tokenizer(sentences, return_tensors="pt", padding=True)[
"input_ids"
]
ls_generate(ls_model, ls_tokenizer, ls_inputs)
hf_generate(hf_model, hf_tokenizer, hf_inputs)
if not args.user_input:
break
if __name__ == "__main__":
main()