Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

how to start the conversion script ? #16

Open
federosso opened this issue Jul 7, 2020 · 2 comments
Open

how to start the conversion script ? #16

federosso opened this issue Jul 7, 2020 · 2 comments

Comments

@federosso
Copy link

federosso commented Jul 7, 2020

I can't understand how to start the conversion script ..
I know PHP but not Py
I need to convert this script:

https://github.com/dysonance/Trendy/blob/master/trendy.py

`def gentrends(x, window=1/3.0, charts=True):
"""
Returns a Pandas dataframe with support and resistance lines.
:param x: One-dimensional data set
:param window: How long the trendlines should be. If window < 1, then it
will be taken as a percentage of the size of the data
:param charts: Boolean value saying whether to print chart to screen
"""

import numpy as np
import pandas.io.data as pd

x = np.array(x)

if window < 1:
    window = int(window * len(x))

max1 = np.where(x == max(x))[0][0]  # find the index of the abs max
min1 = np.where(x == min(x))[0][0]  # find the index of the abs min

# First the max
if max1 + window > len(x):
    max2 = max(x[0:(max1 - window)])
else:
    max2 = max(x[(max1 + window):])

# Now the min
if min1 - window < 0:
    min2 = min(x[(min1 + window):])
else:
    min2 = min(x[0:(min1 - window)])

# Now find the indices of the secondary extrema
max2 = np.where(x == max2)[0][0]  # find the index of the 2nd max
min2 = np.where(x == min2)[0][0]  # find the index of the 2nd min

# Create & extend the lines
maxslope = (x[max1] - x[max2]) / (max1 - max2)  # slope between max points
minslope = (x[min1] - x[min2]) / (min1 - min2)  # slope between min points
a_max = x[max1] - (maxslope * max1)  # y-intercept for max trendline
a_min = x[min1] - (minslope * min1)  # y-intercept for min trendline
b_max = x[max1] + (maxslope * (len(x) - max1))  # extend to last data pt
b_min = x[min1] + (minslope * (len(x) - min1))  # extend to last data point
maxline = np.linspace(a_max, b_max, len(x))  # Y values between max's
minline = np.linspace(a_min, b_min, len(x))  # Y values between min's

# OUTPUT
trends = np.transpose(np.array((x, maxline, minline)))
trends = pd.DataFrame(trends, index=np.arange(0, len(x)),
                      columns=['Data', 'Max Line', 'Min Line'])

if charts is True:
    from matplotlib.pyplot import plot, grid, show
    plot(trends)
    grid()
    show()

return trends, maxslope, minslope

def segtrends(x, segments=2, charts=True):
"""
Turn minitrends to iterative process more easily adaptable to
implementation in simple trading systems; allows backtesting functionality.
:param x: One-dimensional data set
:param window: How long the trendlines should be. If window < 1, then it
will be taken as a percentage of the size of the data
:param charts: Boolean value saying whether to print chart to screen
"""

import numpy as np
y = np.array(x)

# Implement trendlines
segments = int(segments)
maxima = np.ones(segments)
minima = np.ones(segments)
segsize = int(len(y)/segments)
for i in range(1, segments+1):
    ind2 = i*segsize
    ind1 = ind2 - segsize
    maxima[i-1] = max(y[ind1:ind2])
    minima[i-1] = min(y[ind1:ind2])

# Find the indexes of these maxima in the data
x_maxima = np.ones(segments)
x_minima = np.ones(segments)
for i in range(0, segments):
    x_maxima[i] = np.where(y == maxima[i])[0][0]
    x_minima[i] = np.where(y == minima[i])[0][0]

if charts:
    import matplotlib.pyplot as plt
    plt.plot(y)
    plt.grid(True)

for i in range(0, segments-1):
    maxslope = (maxima[i+1] - maxima[i]) / (x_maxima[i+1] - x_maxima[i])
    a_max = maxima[i] - (maxslope * x_maxima[i])
    b_max = maxima[i] + (maxslope * (len(y) - x_maxima[i]))
    maxline = np.linspace(a_max, b_max, len(y))

    minslope = (minima[i+1] - minima[i]) / (x_minima[i+1] - x_minima[i])
    a_min = minima[i] - (minslope * x_minima[i])
    b_min = minima[i] + (minslope * (len(y) - x_minima[i]))
    minline = np.linspace(a_min, b_min, len(y))

    if charts:
        plt.plot(maxline, 'g')
        plt.plot(minline, 'r')

if charts:
    plt.show()

# OUTPUT
return x_maxima, maxima, x_minima, minima

def minitrends(x, window=20, charts=True):
"""
Turn minitrends to iterative process more easily adaptable to
implementation in simple trading systems; allows backtesting functionality.
:param x: One-dimensional data set
:param window: How long the trendlines should be. If window < 1, then it
will be taken as a percentage of the size of the data
:param charts: Boolean value saying whether to print chart to screen
"""

import numpy as np

y = np.array(x)
if window < 1:  # if window is given as fraction of data length
    window = float(window)
    window = int(window * len(y))
x = np.arange(0, len(y))
dy = y[window:] - y[:-window]
crit = dy[:-1] * dy[1:] < 0

# Find whether max's or min's
maxi = (y[x[crit]] - y[x[crit] + window] > 0) & \
       (y[x[crit]] - y[x[crit] - window] > 0) * 1
mini = (y[x[crit]] - y[x[crit] + window] < 0) & \
       (y[x[crit]] - y[x[crit] - window] < 0) * 1
maxi = maxi.astype(float)
mini = mini.astype(float)
maxi[maxi == 0] = np.nan
mini[mini == 0] = np.nan
xmax = x[crit] * maxi
xmax = xmax[~np.isnan(xmax)]
xmax = xmax.astype(int)
xmin = x[crit] * mini
xmin = xmin[~np.isnan(xmin)]
xmin = xmin.astype(int)

# See if better max or min in region
yMax = np.array([])
xMax = np.array([])
for i in xmax:
    indx = np.where(xmax == i)[0][0] + 1
    try:
        Y = y[i:xmax[indx]]
        yMax = np.append(yMax, Y.max())
        xMax = np.append(xMax, np.where(y == yMax[-1])[0][0])
    except:
        pass
yMin = np.array([])
xMin = np.array([])
for i in xmin:
    indx = np.where(xmin == i)[0][0] + 1
    try:
        Y = y[i:xmin[indx]]
        yMin = np.append(yMin, Y.min())
        xMin = np.append(xMin, np.where(y == yMin[-1])[0][0])
    except:
        pass
if y[-1] > yMax[-1]:
    yMax = np.append(yMax, y[-1])
    xMax = np.append(xMax, x[-1])
if y[0] not in yMax:
    yMax = np.insert(yMax, 0, y[0])
    xMax = np.insert(xMax, 0, x[0])
if y[-1] < yMin[-1]:
    yMin = np.append(yMin, y[-1])
    xMin = np.append(xMin, x[-1])
if y[0] not in yMin:
    yMin = np.insert(yMin, 0, y[0])
    xMin = np.insert(xMin, 0, x[0])

# Plot results if desired
if charts is True:
    from matplotlib.pyplot import plot, show, grid
    plot(x, y)
    plot(xMax, yMax, '-o')
    plot(xMin, yMin, '-o')
    grid(True)
    show()
# Return arrays of critical points
return xMax, yMax, xMin, yMin

def iterlines(x, window=30, charts=True):
"""
Turn minitrends to iterative process more easily adaptable to
implementation in simple trading systems; allows backtesting functionality.
:param x: One-dimensional data set
:param window: How long the trendlines should be. If window < 1, then it
will be taken as a percentage of the size of the data
:param charts: Boolean value saying whether to print chart to screen
"""

import numpy as np

x = np.array(x)
n = len(x)
if window < 1:
    window = int(window * n)
sigs = np.zeros(n, dtype=float)

i = window
while i != n:
    if x[i] > max(x[i-window:i]): sigs[i] = 1
    elif x[i] < min(x[i-window:i]): sigs[i] = -1
    i += 1

xmin = np.where(sigs == -1.0)[0]
xmax = np.where(sigs == 1.0)[0]
ymin = x[xmin]
ymax = x[xmax]
if charts is True:
    from matplotlib.pyplot import plot, grid, show
    plot(x)
    plot(xmin, ymin, 'ro')
    plot(xmax, ymax, 'go')
    grid(True)
    show()

return sigs`
@jaseyd
Copy link

jaseyd commented Jul 8, 2020

See this closed issue. I was struggling too

You'll also need to install Python 2 (not 3) and ensure it is in your PATH variable

@Hamza367
Copy link

See this closed issue. I was struggling too

You'll also need to install Python 2 (not 3) and ensure it is in your PATH variable

Thanks, this really helped!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants