-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit_domainfill.f90
451 lines (375 loc) · 18 KB
/
init_domainfill.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
!***********************************************************************
!* Copyright 2012,2013 *
!* Jerome Brioude, Delia Arnold, Andreas Stohl, Wayne Angevine, *
!* John Burkhart, Massimo Cassiani, Adam Dingwell, Richard C Easter, Sabine Eckhardt,*
!* Stephanie Evan, Jerome D Fast, Don Morton, Ignacio Pisso, *
!* Petra Seibert, Gerard Wotawa, Caroline Forster, Harald Sodemann, *
!* *
!* This file is part of FLEXPART WRF *
!* *
!* FLEXPART is free software: you can redistribute it and/or modify *
!* it under the terms of the GNU General Public License as published by*
!* the Free Software Foundation, either version 3 of the License, or *
!* (at your option) any later version. *
!* *
!* FLEXPART is distributed in the hope that it will be useful, *
!* but WITHOUT ANY WARRANTY; without even the implied warranty of *
!* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
!* GNU General Public License for more details. *
!* *
!* You should have received a copy of the GNU General Public License *
!* along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. *
!***********************************************************************
subroutine init_domainfill
!
!*******************************************************************************
! *
! Note: This is the FLEXPART_WRF version of subroutine init_domainfill. *
! The computational grid is the WRF x-y grid rather than lat-lon. *
! *
! Initializes particles equally distributed over the first release location *
! specified in file RELEASES. This box is assumed to be the domain for doing *
! domain-filling trajectory calculations. *
! All particles carry the same amount of mass which alltogether comprises the *
! mass of air within the box. *
! *
! Author: A. Stohl *
! *
! 15 October 2002 *
! *
! 26 Oct 2005, R. Easter - changes for gridarea *
! associated with WRF horizontal grid. *
! Also calc. true ylat for pv stuff. *
! 11 Nov 2005, R. Easter - fixed error involving xy to latlon *
! *
! *
!*******************************************************************************
! *
! Variables: *
! *
! numparticlecount consecutively counts the number of particles released *
! nx_we(2) grid indices for western and eastern boundary of domain- *
! filling trajectory calculations *
! ny_sn(2) grid indices for southern and northern boundary of domain- *
! filling trajectory calculations *
! *
!*******************************************************************************
use point_mod
use par_mod
use com_mod
implicit none
integer :: j,ix,jy,kz,ncolumn,numparttot
!,idummy
! real gridarea(0:nymax-1),pp(nzmax),ylat,ylatp,ylatm,hzone,ran1
real :: gridarea(0:nymax-1),pp(nzmax),ylat, ran1
! real cosfactm,cosfactp,pih,deltacol,dz1,dz2,dz,pnew,fractus
real :: deltacol,dz1,dz2,dz,pnew,fractus
real :: xlon
real,parameter :: pih=pi/180.
real :: colmass(0:nxmax-1,0:nymax-1),colmasstotal,zposition
integer :: ixm,ixp,jym,jyp,indzm,indzp,in,indzh,i,jj
real :: pvpart,ddx,ddy,rddx,rddy,p1,p2,p3,p4,y1(2)
integer :: idummy = -11
! Determine the release region (only full grid cells), over which particles
! shall be initialized
! Use 2 fields for west/east and south/north boundary
!**************************************************************************
nx_we(1)=max(int(xpoint1(1)),0)
nx_we(2)=min((int(xpoint2(1))+1),nxmin1)
ny_sn(1)=max(int(ypoint1(1)),0)
ny_sn(2)=min((int(ypoint2(1))+1),nymin1)
! For global simulations (both global wind data and global domain-filling),
! set a switch, such that no boundary conditions are used
!**************************************************************************
if (xglobal.and.sglobal.and.nglobal) then
if ((nx_we(1).eq.0).and.(nx_we(2).eq.nxmin1).and. &
(ny_sn(1).eq.0).and.(ny_sn(2).eq.nymin1)) then
gdomainfill=.true.
else
gdomainfill=.false.
endif
endif
! Do not release particles twice (i.e., not at both in the leftmost and rightmost
! grid cell) for a global domain
!********************************************************************************
if (xglobal) nx_we(2)=min(nx_we(2),nx-2)
! Calculate area of grid cell with formula M=2*pi*R*h*dx/360,
! see Netz, Formeln der Mathematik, 5. Auflage (1983), p.90
!************************************************************
do jy=ny_sn(1),ny_sn(2) ! loop about latitudes
! ylat=ylat0+real(jy)*dy
! ylatp=ylat+0.5*dy
! ylatm=ylat-0.5*dy
! if ((ylatm.lt.0).and.(ylatp.gt.0.)) then
! hzone=1./dyconst
! else
! cosfactp=cos(ylatp*pih)*r_earth
! cosfactm=cos(ylatm*pih)*r_earth
! if (cosfactp.lt.cosfactm) then
! hzone=sqrt(r_earth**2-cosfactp**2)-
! + sqrt(r_earth**2-cosfactm**2)
! else
! hzone=sqrt(r_earth**2-cosfactm**2)-
! + sqrt(r_earth**2-cosfactp**2)
! endif
! endif
!10 gridarea(jy)=2.*pi*r_earth*hzone*dx/360.
! for FLEXPART_WRF, dx & dy are in meters, and no cos(lat) is needed
! ??? should maybe include map factor here ???
gridarea(jy)=dx*dy
enddo
! Do the same for the south pole
if (sglobal) then
write(*,*)
write(*,*) '*** stopping in init_domainfill ***'
write(*,*) ' the s-pole code section should not be active'
write(*,*)
! ylat=ylat0
! ylatp=ylat+0.5*dy
! ylatm=ylat
! cosfactm=0.
! cosfactp=cos(ylatp*pih)*r_earth
! hzone=sqrt(r_earth**2-cosfactm**2)-
! + sqrt(r_earth**2-cosfactp**2)
! gridarea(0)=2.*pi*r_earth*hzone*dx/360.
endif
! Do the same for the north pole
if (nglobal) then
write(*,*)
write(*,*) '*** stopping in init_domainfill ***'
write(*,*) ' the s-pole code section should not be active'
write(*,*)
! ylat=ylat0+real(nymin1)*dy
! ylatp=ylat
! ylatm=ylat-0.5*dy
! cosfactp=0.
! cosfactm=cos(ylatm*pih)*r_earth
! hzone=sqrt(r_earth**2-cosfactp**2)-
! + sqrt(r_earth**2-cosfactm**2)
! gridarea(nymin1)=2.*pi*r_earth*hzone*dx/360.
endif
! Calculate total mass of each grid column and of the whole atmosphere
!*********************************************************************
colmasstotal=0.
do jy=ny_sn(1),ny_sn(2) ! loop about latitudes
do ix=nx_we(1),nx_we(2) ! loop about longitudes
pp(1)=rho(ix,jy,1,1)*r_air*tt(ix,jy,1,1)
pp(nz)=rho(ix,jy,nz,1)*r_air*tt(ix,jy,nz,1)
colmass(ix,jy)=(pp(1)-pp(nz))/ga*gridarea(jy)
colmasstotal=colmasstotal+colmass(ix,jy)
enddo
enddo
write(*,*) 'Atm. mass: ',colmasstotal
if (ipin.eq.0) numpart=0
! Determine the particle positions
!*********************************
numparttot=0
numcolumn=0
do jy=ny_sn(1),ny_sn(2) ! loop about latitudes
! ylat=ylat0+real(jy)*dy
do ix=nx_we(1),nx_we(2) ! loop about longitudes
! for FLEXPART_WRF, x & y coords are in meters.
! In the "do 30" loop, ylat is only needed for pv calcs.
call xyindex_to_ll_wrf( 0, real(ix), real(jy), xlon, ylat )
ncolumn=nint(0.999*real(npart(1))*colmass(ix,jy)/ &
colmasstotal)
if (ncolumn.eq.0) goto 30
if (ncolumn.gt.numcolumn) numcolumn=ncolumn
! Calculate pressure at the altitudes of model surfaces, using the air density
! information, which is stored as a 3-d field
!*****************************************************************************
do kz=1,nz
pp(kz)=rho(ix,jy,kz,1)*r_air*tt(ix,jy,kz,1)
enddo
deltacol=(pp(1)-pp(nz))/real(ncolumn)
pnew=pp(1)+deltacol/2.
jj=0
do j=1,ncolumn
jj=jj+1
! For columns with many particles (i.e. around the equator), distribute
! the particles equally, for columns with few particles (i.e. around the
! poles), distribute the particles randomly
!***********************************************************************
if (ncolumn.gt.20) then
pnew=pnew-deltacol
else
pnew=pp(1)-ran1(idummy)*(pp(1)-pp(nz))
endif
do kz=1,nz-1
if ((pp(kz).ge.pnew).and.(pp(kz+1).lt.pnew)) then
dz1=pp(kz)-pnew
dz2=pnew-pp(kz+1)
dz=1./(dz1+dz2)
! Assign particle position
!*************************
! Do the following steps only if particles are not read in from previous model run
!*********************************************************************************
if (ipin.eq.0) then
xtra1(numpart+jj)=real(ix)-0.5+ran1(idummy)
if (ix.eq.0) xtra1(numpart+jj)=ran1(idummy)
if (ix.eq.nxmin1) xtra1(numpart+jj)= &
real(nxmin1)-ran1(idummy)
ytra1(numpart+jj)=real(jy)-0.5+ran1(idummy)
ztra1(numpart+jj)=(height(kz)*dz2+height(kz+1)*dz1)*dz
if (ztra1(numpart+jj).gt.height(nz)-0.5) &
ztra1(numpart+jj)=height(nz)-0.5
! Interpolate PV to the particle position
!****************************************
ixm=int(xtra1(numpart+jj))
jym=int(ytra1(numpart+jj))
ixp=ixm+1
jyp=jym+1
ddx=xtra1(numpart+jj)-real(ixm)
ddy=ytra1(numpart+jj)-real(jym)
rddx=1.-ddx
rddy=1.-ddy
p1=rddx*rddy
p2=ddx*rddy
p3=rddx*ddy
p4=ddx*ddy
do i=2,nz
if (height(i).gt.ztra1(numpart+jj)) then
indzm=i-1
indzp=i
goto 6
endif
enddo
6 continue
dz1=ztra1(numpart+jj)-height(indzm)
dz2=height(indzp)-ztra1(numpart+jj)
dz=1./(dz1+dz2)
do in=1,2
indzh=indzm+in-1
y1(in)=p1*pv(ixm,jym,indzh,1) &
+p2*pv(ixp,jym,indzh,1) &
+p3*pv(ixm,jyp,indzh,1) &
+p4*pv(ixp,jyp,indzh,1)
enddo
pvpart=(dz2*y1(1)+dz1*y1(2))*dz
if (ylat.lt.0.) pvpart=-1.*pvpart
! For domain-filling option 2 (stratospheric O3), do the rest only in the stratosphere
!*************************************************************************************
if (((ztra1(numpart+jj).gt.3000.).and. &
(pvpart.gt.pvcrit)).or.(mdomainfill.eq.1)) then
! if (((ztra1(numpart+jj).lt.8000.)
! + ).or.(mdomainfill.eq.1)) then
! Assign certain properties to the particle
!******************************************
nclass(numpart+jj)=min(int(ran1(idummy)* &
real(nclassunc))+1,nclassunc)
numparticlecount=numparticlecount+1
npoint(numpart+jj)=numparticlecount
idt(numpart+jj)=mintime
itra1(numpart+jj)=0
itramem(numpart+jj)=0
itrasplit(numpart+jj)=itra1(numpart+jj)+ldirect* &
itsplit
xmass1(numpart+jj,1)=colmass(ix,jy)/real(ncolumn)
if (mdomainfill.eq.2) xmass1(numpart+jj,1)= &
xmass1(numpart+jj,1)*pvpart*48./29.*ozonescale/10.**9
! xmass1(numpart+jj,1)*60.*48./29./10.**9
else
jj=jj-1
endif
endif
endif
end do
end do
numparttot=numparttot+ncolumn
if (ipin.eq.0) numpart=numpart+jj
30 continue
end do
end do
! Check whether numpart is really smaller than maxpart
!*****************************************************
if (numpart.gt.maxpart) then
write(*,*) 'numpart too large: change source in init_atm_mass.f'
write(*,*) 'numpart: ',numpart,' maxpart: ',maxpart
endif
xmassperparticle=colmasstotal/real(numparttot)
! Make sure that all particles are within domain
!***********************************************
do j=1,numpart
if ((xtra1(j).lt.0.).or.(xtra1(j).ge.real(nxmin1)).or. &
(ytra1(j).lt.0.).or.(ytra1(j).ge.real(nymin1))) then
itra1(j)=-999999999
endif
enddo
! For boundary conditions, we need fewer particle release heights per column,
! because otherwise it takes too long until enough mass has accumulated to
! release a particle at the boundary (would take dx/u seconds), leading to
! relatively large position errors of the order of one grid distance.
! It's better to release fewer particles per column, but to do so more often.
! Thus, use on the order of nz starting heights per column.
! We thus repeat the above to determine fewer starting heights, that are
! used furtheron in subroutine boundcond_domainfill.f.
!****************************************************************************
fractus=real(numcolumn)/real(nz)
write(*,*) 'Total number of particles at model start: ',numpart
write(*,*) 'Maximum number of particles per column: ',numcolumn
write(*,*) 'If ',fractus,' <1, better use more particles'
fractus=sqrt(max(fractus,1.))/2.
do jy=ny_sn(1),ny_sn(2) ! loop about latitudes
do ix=nx_we(1),nx_we(2) ! loop about longitudes
ncolumn=nint(0.999/fractus*real(npart(1))*colmass(ix,jy) &
/colmasstotal)
if (ncolumn.gt.maxcolumn) stop 'maxcolumn too small'
if (ncolumn.eq.0) goto 80
! Memorize how many particles per column shall be used for all boundaries
! This is further used in subroutine boundcond_domainfill.f
! Use 2 fields for west/east and south/north boundary
!************************************************************************
if (ix.eq.nx_we(1)) numcolumn_we(1,jy)=ncolumn
if (ix.eq.nx_we(2)) numcolumn_we(2,jy)=ncolumn
if (jy.eq.ny_sn(1)) numcolumn_sn(1,ix)=ncolumn
if (jy.eq.ny_sn(2)) numcolumn_sn(2,ix)=ncolumn
! Calculate pressure at the altitudes of model surfaces, using the air density
! information, which is stored as a 3-d field
!*****************************************************************************
do kz=1,nz
pp(kz)=rho(ix,jy,kz,1)*r_air*tt(ix,jy,kz,1)
enddo
! Determine the reference starting altitudes
!*******************************************
deltacol=(pp(1)-pp(nz))/real(ncolumn)
pnew=pp(1)+deltacol/2.
do j=1,ncolumn
pnew=pnew-deltacol
do kz=1,nz-1
if ((pp(kz).ge.pnew).and.(pp(kz+1).lt.pnew)) then
dz1=pp(kz)-pnew
dz2=pnew-pp(kz+1)
dz=1./(dz1+dz2)
zposition=(height(kz)*dz2+height(kz+1)*dz1)*dz
if (zposition.gt.height(nz)-0.5) zposition=height(nz)-0.5
! Memorize vertical positions where particles are introduced
! This is further used in subroutine boundcond_domainfill.f
!***********************************************************
if (ix.eq.nx_we(1)) zcolumn_we(1,jy,j)=zposition
if (ix.eq.nx_we(2)) zcolumn_we(2,jy,j)=zposition
if (jy.eq.ny_sn(1)) zcolumn_sn(1,ix,j)=zposition
if (jy.eq.ny_sn(2)) zcolumn_sn(2,ix,j)=zposition
! Initialize mass that has accumulated at boundary to zero
!*********************************************************
acc_mass_we(1,jy,j)=0.
acc_mass_we(2,jy,j)=0.
acc_mass_sn(1,jy,j)=0.
acc_mass_sn(2,jy,j)=0.
endif
end do
end do
80 continue
end do
end do
! If particles shall be read in to continue an existing run,
! then the accumulated masses at the domain boundaries must be read in, too.
! This overrides any previous calculations.
!***************************************************************************
if (ipin.eq.1) then
open(unitboundcond,file=path(1)(1:length(1))//'boundcond.bin', &
form='unformatted')
read(unitboundcond) numcolumn_we,numcolumn_sn, &
zcolumn_we,zcolumn_sn,acc_mass_we,acc_mass_sn
close(unitboundcond)
endif
end subroutine init_domainfill