-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmotivic.tex
521 lines (437 loc) · 21.6 KB
/
motivic.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
\documentclass{shortart}
\usepackage{amsmath, amssymb, amsthm}
\usepackage{tikz-cd}
\usepackage{plastex}
\title{Motivic Homotopy Theory}
\author{Dexter Chua}
\newtheorem{thm}{Theorem}[section]
\newtheorem{lemma}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{cor}[thm]{Corollary}
\theoremstyle{definition}
\newtheorem{defi}[thm]{Definition}
\newtheorem{remark}[thm]{Remark}
\newtheorem{eg}[thm]{Example}
\newcommand\Sm{\mathrm{Sm}}
\newcommand\Spc{\mathrm{Spc}}
\newcommand\Sing{\mathrm{Sing}}
\newcommand\Nis{\mathrm{Nis}}
\newcommand\Th{\mathrm{Th}}
\newcommand\Pre{\mathcal{P}}
\newcommand\SH{\mathcal{SH}}
\renewcommand\H{\mathcal{H}}
\renewcommand\P{\mathbb{P}}
\newcommand\A{\mathbb{A}}
\newcommand\Ch{\mathrm{Ch}}
\newcommand\Ab{\mathrm{Ab}}
\newcommand\DM{\mathrm{DM}}
\newcommand\G{\mathbb{G}}
\newcommand\Z{\mathbb{Z}}
\newcommand\Bl{\mathrm{Bl}}
\newcommand\Mot{\mathrm{Mot}}
\newcommand\eff{\mathrm{eff}}
\newcommand\veff{\mathrm{veff}}
\newcommand\PrL{\mathcal{P}r^L}
\newcommand\PrR{\mathcal{P}r^R}
\renewcommand\S{\mathbb{S}}
\DeclareMathOperator\CAlg{CAlg}
\DeclareMathOperator\Hom{Hom}
\DeclareMathOperator\Sp{Sp}
\DeclareMathOperator\Stab{Stab}
\DeclareMathOperator\Spec{Spec}
\DeclareMathOperator*\colim{colim}
\begin{document}
Throughout the talk, $S$ is a quasi-compact and quasi-separated scheme.
\begin{defi}
Let $\Sm_S$ be the category of finitely presented smooth schemes over $S$.
\end{defi}
Since we impose the finitely presented condition, this is an essentially small (1-)category.
The starting point of motivic homotopy theory is the $\infty$-category $\Pre(\Sm_S)$ of presheaves on $\Sm_S$. This is a symmetric monoidal category under the Cartesian product. Eventually, we will need the pointed version $\Pre(\Sm_S)_*$, which can be defined either as the category of pointed objects in $\Pre(\Sm_S)$, or the category of presheaves with values in pointed spaces. This is symmetric monoidal $\infty$-category under the (pointwise) smash product.
In the first two chapters, we will construct the unstable motivic category, which fits in the bottom-right corner of the following diagram:
\begin{useimager}
\[
\begin{tikzcd}
\Pre(\Sm_S) \ar[r, "L_{\Nis}"] \ar[d, "\widetilde{L_{\A^1}}"] & L_{\Nis} \Pre(\Sm_S) \equiv \Spc_S \ar[d, "L_{\A^1}"]\\
L_{\A^1} \Pre(\Sm_S) \ar[r, "\widetilde{L_{\Nis}}"] & L_{A^1 \wedge \Nis} \Pre(\Sm_S) \equiv \Spc_S^{\A^1} \equiv \H(S)
\end{tikzcd}
\]
\end{useimager}
The first chapter will discuss the horizontal arrows (i.e. Nisnevich localization), and the second will discuss the vertical ones (i.e. $\A^1$-localization).
Afterwards, we will start ``doing homotopy theory''. In chapter \ref{chapter:homotopy-sheaves}, we will discuss the motivic version of homotopy groups, and in chapter \ref{chapter:thom}, we will discuss Thom spaces.
In chapter \ref{chapter:stable}, we will introduce the stable motivic category, and finally, in chapter \ref{chapter:effective}, we will introduce effective and very effective spectra.
\section{The Nisnevich topology}
Nisnevich localization is relatively standard. This is obtained by defining the Nisnevich topology on $\Sm_S$, and then imposing the usual sheaf condition. Consequently, the Nisnevich localization functor is a standard sheafification functor, and automatically enjoys the nice formal properties of sheafification. For example, it is an exact functor.
\begin{defi}
Let $X \in \Sm_S$. A Nisnevich cover of $X$ is a finite family of \'etale morphisms $\{p_i: U_i \to X\}_{i \in I}$ such that there is a filtration
\[
\emptyset \subseteq Z_n \subseteq Z_{n - 1} \subseteq \cdots \subseteq Z_1 \subseteq Z_0 = X
\]
of $X$ by finitely presented closed subschemes such that for each strata $Z_m \setminus Z_{m + 1}$, there is some $p_i$ such that
\[
p_i^{-1}(Z_m \setminus Z_{m + 1}) \to Z_m \setminus Z_{m + 1}
\]
admits a section.
\end{defi}
\begin{eg}
Any Zariski cover is a Nisnevich cover. Any Nisnevich cover is an \'etale cover.
\end{eg}
\begin{eg}
Let $k$ be a field of characteristic not $2$, $S = \Spec k$ and $a \in k^\times$. Consider the covering
\begin{useimager}
\[
\begin{tikzcd}[column sep=small]
& \A^1 \setminus \{0\} \ar[d, "x^2"]\\
\A^1 \setminus \{a\} \ar[r, hook] & \A^1
\end{tikzcd}.
\]
\end{useimager}
This forms a Nisnevich cover with the filtration $\emptyset \subseteq \{a\} \subseteq \A^1$ iff $\sqrt{a} \in k$.
\end{eg}
It turns out to check that something is a Nisnevich sheaf, it suffices to check it for very particular covers with two opens.
\begin{defi}
An elementary distinguished square is a pullback diagram
\begin{useimager}
\[
\begin{tikzcd}
U \times_X V \ar[r] \ar[d] & V \ar[d, "p"]\\
U \ar[r, "i"] & X
\end{tikzcd}
\]
\end{useimager}
of $S$-schemes in $\Sm_S$ such that $i$ is a Zariski open immersion, $p$ is \'etale, and $p^{-1}(X \setminus U) \to X \setminus U$ is an isomorphism of schemes, where $X \setminus U$ is equipped with the reduced induced scheme structure.
\end{defi}
$\{U, V\}$ forms a Nisnevich cover of $X$ with filtration $\emptyset \subseteq X \setminus U \subseteq X$.
\begin{defi}
We define $\Spc_S = L_{\Nis}\Pre(\Sm_S)$ to be the full subcategory of $\Pre(\Sm_S)$ consisting of presheaves that satisfy descent with respect to Nisnevich covers. Such presheaves are also said to be Nisnevich local. This is an accessible subcategory of $\Pre(\Sm_S)$ and admits a localization functor $L_{\Nis} : \Pre(\Sm_S) \to \Spc_S$.
\end{defi}
\begin{eg}
Every representable functor satisfies Nisnevich descent, since they in fact satisfy \'etale descent. Note that these functors are valued in discrete spaces.
\end{eg}
\begin{lemma}
Then $F \in \Pre(\Sm_S)$ is Nisnevich local iff $F(\emptyset) \simeq *$ and for every elementary distinguished square
\begin{useimager}
\[
\begin{tikzcd}
U \times_X V \ar[r] \ar[d] & V \ar[d, "p"]\\
U \ar[r, "i"] & X
\end{tikzcd}
\]
\end{useimager}
the induced diagram
\begin{useimager}
\[
\begin{tikzcd}
F(X) \ar[r] \ar[d] & F(V) \ar[d]\\
F(U) \ar[r] & F(U \times_X V)
\end{tikzcd}
\]
\end{useimager}
is a pullback diagram.
\end{lemma}
Note that the ``only if'' direction is immediate from definition, and doesn't require the assumption on $S$.
\begin{cor}
If
\begin{useimager}
\[
\begin{tikzcd}
U \times_X V \ar[r] \ar[d] & V \ar[d, "p"]\\
U \ar[r, "i"] & X
\end{tikzcd}
\]
\end{useimager}
is an elementary distinguished square, then, when considered a square $\Spc_S$, this is a pushout diagram.
In particular, this holds when $\{U, V\}$ is a Zariski cover.
\end{cor}
\section{\texorpdfstring{$\A^1$}{A1}-localization}
\begin{defi}
A presheaf $F \in \Pre(\Sm_S)$ is $\A^1$-local if the natural map $F(X \times \A^1) \to F(X \times \{0\})$ is an equivalence for all $X$. We write $L_{\A^1}\Pre(\Sm_S)$ for the full subcategory of $\A^1$-local presheaves, and $L_{\A^1 \wedge \Nis}\Pre(\Sm_S) = \Spc_S^{\A^1}$ for the presheaves that are \emph{both} Nisnevich local and $\A^1$-local.
\end{defi}
Therefore we get a square of accessible localizations
\begin{useimager}
\[
\begin{tikzcd}
\Pre(\Sm_S) \ar[r, "L_{\Nis}"] \ar[d, "\widetilde{L_{\A^1}}"] & L_{\Nis} \Pre(\Sm_S) \equiv \Spc_S \ar[d, "L_{\A^1}"]\\
L_{\A^1} \Pre(\Sm_S) \ar[r, "\widetilde{L_{\Nis}}"] & L_{A^1 \wedge \Nis} \Pre(\Sm_S) \equiv \Spc_S^{\A^1} \equiv \H(S)
\end{tikzcd}
\]
\end{useimager}
We also write the composite $\Pre(\Sm_S) \to \Spc_S^{\A^1}$ as $L_{\Mot}$.
\begin{remark}
Note that if we think of each of these as subcategories, $L_{\A^1}$ and $\widetilde{L_{\A^1}}$ are not the same functors.
\end{remark}
\begin{remark}
A representable functor is usually not $\A^1$-local. Hence if $X \in \Sm_S$, the resulting sheaf $L_{\Mot} X \in \Spc_S^{\A^1}$ is usually not discrete. If $X$ is already $\A^1$-local, then we say $X$ is \emph{$\A^1$-rigid}. For example, $\G_m$ is $\A^1$-rigid.
\end{remark}
Unlike $L_{\Nis}$, the $\A^1$-localization functor $L_{\A^1}$ is not a sheafification functor. Thus, \emph{a priori}, the only nice property of it we know is that it is a left adjoint. To remedy for this, we describe an explicit construction of $\widetilde{L_{\A^1}}$, and then observe that
\begin{lemma}
$L_{\Mot} \simeq (L_{\Nis} \widetilde{L_{\A^1}})^{\omega}$.
\end{lemma}
The functor $\widetilde{L_{\A^1}}$ is better known as $\Sing^{\A^1}$.
\begin{defi}
Define the ``affine $n$-simplex'' $\Delta^n$ by
\[
\Delta^n = \Spec k[x_0, \ldots, x_n]/(x_0 + \cdots + x_n = 1).
\]
This forms a cosimplicial scheme in the usual way.
For $X \in \Pre(\Sm_S)$, we define $\Sing^{\A^1}X \in \Pre(\Sm_S)$ by
\[
(\Sing^{\A^1}X)(U) = |X(U \times \Delta^\bullet)|.
\]
\end{defi}
It is then straightforward to check that
\begin{lemma}
$\widetilde{L_{\A^1}} \simeq \Sing^{\A^1}$.
\end{lemma}
\begin{cor}
$\widetilde{L_{\A^1}}$ preserves finite products. Hence so does $L_{\Mot}$.
\end{cor}
\begin{eg}
Let $E \to X$ be a (Nisnevich-)locally trivial $\A^n$-bundle. Then $E \to X$ is an $\A^1$-equivalence in $L_{\Nis}\Pre(\Sm_S)$.
\end{eg}
\begin{eg}
We claim that $\P^1 \cong \Sigma \G_m = S^1 \wedge \G_m \in \Spc_S^{\A^1}$. Here we are working with pointed objects so that suspensions make sense.
Indeed, we have a Zariski open cover of $\P^1$ given by
\begin{useimager}
\[
\begin{tikzcd}
\A^1 \setminus \{0\} \ar[r] \ar[d] & \A^1 \ar[d, "x^{-1}"]\\
\A^1 \ar[r, "x"] & \P^1
\end{tikzcd}
\]
\end{useimager}
Since this is in particular an elementary distinguished square, it is also a pushout in $(\Spc_S)_*$. Now apply $L_{\A^1}$ to this diagram, which preserves pushouts since it is a left adjoint. Since $L_{\A^1} \A^1 \simeq *$ the claim follows.
If we ``replace'' only one of the $\A^1$'s with $*$, we see that this also says
\[
\Sigma \G_m = \A^1 / (\A^1 \setminus \{0\}).
\]
\end{eg}
In general, we have
\begin{lemma}
\[
\begin{aligned}
\A^n \setminus \{0\} &\cong S^{n - 1} \wedge \G_m^{\wedge n}\\
\P^n / \P^{n - 1} &\cong S^n \wedge \G_m^{\wedge n}.
\end{aligned}
\]
\end{lemma}
It is convenient to introduce the following notation:
\begin{defi}
We define $S^{p, q} = \G_m^{\wedge q} \wedge (S^1)^{\wedge (p - q)}$ whenever it makes sense.
\end{defi}
\section{Homotopy sheaves}\label{chapter:homotopy-sheaves}
Naively, one would like to define the motivic homotopy groups of $X \in (\Spc_S^{\A^1})_*$ as $[S^{p, q}, X]_*$. This is an abelian group. We can do better than that, and produce $\pi_{p, q} X$ as a \emph{sheaf}.
\begin{defi}
Let $X \in \Spc_S$. We define $\pi_0^{\Nis}(X)$ to be the Nisnevich sheafification of the presheaf of sets
\[
U \mapsto [U, X]_{\Spc_S}.
\]
If $X \in (\Spc_S)_*$ and $n \geq 1$, define $\pi_n^{\Nis}(X)$ to be the Nisnevich sheafification of the presheaf of groups
\[
U \mapsto [S^n \wedge U_+, X]_{(\Spc_S)_*}.
\]
In general, if $X \in \Pre(\Sm_S)$, we define $\pi_n^{\Nis}(X) = \pi_n^{\Nis}(L_{\Nis} X)$. Finally, we define
\[
\pi_n^{\A^1}(X) = \pi_n^{\Nis}(L_{\Mot}X).
\]
\end{defi}
\begin{cor}
If $F \to X \to Y$ is a fiber sequence in $(\Spc_S^{\A^1})_*$, then there is a long exact sequence
\[
\cdots \pi_{n + 1}^{\A^1} Y \to \pi_n^{\A^1} F \to \pi_n^{\A^1} X \to \pi_n^{\A^1} Y \to \cdots
\]
of Nisnevich sheaves.
\end{cor}
\begin{proof}
The forgetful functor $\Spc_S^{\A^1} \to \Pre(\Sm_S)$ is a right adjoint, hence preserves fiber sequences. So fiber sequences in $\Spc_S^{\A^1}$ are computed objectwise. Then note that sheafification is exact.
\end{proof}
Here it is essential that we did not include $L_{\A^1}$ in the definition of $\pi_n^{\A^1}(X)$, since $L_{\A^1}$ is not exact.
\begin{defi}
If $X \in \Pre(\Sm_S)$, we say $X$ is $\A^1$-connected if the canonical map $X \to S$ induces an isomorphism of sheaves $\pi_0^{\A^1} X \to \pi_0^{\A^1} S = *$.
\end{defi}
Given $X \in \Spc_S$, to check if $X$ is $\A^1$-connected, it turns out it suffices to check that $\pi_0^{\Nis}(X)$ is trivial.
\begin{prop}[Unstable $\A^1$-connectivity]
Let $X \in \Pre(\Sm_S)$. Then the canonical map
\[
X \to L_{\Mot}X
\]
induces an epimorphism
\[
\pi_0^{\Nis}X \to \pi_0^{\Nis} L_{\Mot} X = \pi_0^{\A^1} X.
\]
\end{prop}
\begin{proof}
Since $\pi_0^{\Nis} X \to \pi_0^{\Nis} L_{\Nis} X$ is an isomorphism, it suffices to show that $\pi_0^{\Nis} X \to \pi_0^{\Nis} \Sing^{\A^1} X(U)$ is always an epimorphism. This follows by inspection.
\end{proof}
The final property of $\pi_n^{\Nis}$ we note is that over a perfect field, $\pi_n^{\Nis}$ is \emph{unramified}. Roughly speaking, it says
\[
\pi_n^{\Nis}(X)(U) \to \pi_n^{\Nis}(X)(\Spec k(U))
\]
is injective for any $U \in \Sm_S$. We cannot exactly say this because $\Spec k(U)$ is in general not smooth over $S$.
\section{Thom spaces}\label{chapter:thom}
\begin{defi}
Let $E \to X$ be a vector bundle. Then we define the \emph{Thom space} to be
\[
\Th(E) = E / E^\times.
\]
\end{defi}
\begin{prop}
\[
\Th(E) \cong \P(E \oplus 1)/\P(E).
\]
\end{prop}
\begin{thm}[Purity theorem]
Let $Z \hookrightarrow X$ be a closed embedding in $\Sm_S$ with normal bundle $\nu_Z$. Then we have an equivalence (in $\Spc_S^{\A^1}$).
\[
\frac{X}{X \setminus Z} \to \Th(\nu_Z).
\]
\end{thm}
\begin{proof}[Proof idea]
The first geometric input is the construction of a bundle of closed embeddings over $\A^1$ whose fiber over $\{0\}$ is $(\nu_Z, Z)$ and $(X, Z)$ elsewhere. This has a very explicit description:
\[
D_ZX = \Bl_{Z \times_S \{0\}} (X \times_S \A^1) \setminus \Bl_{Z \times_S \{0\}} (X \times_S \{0\}).
\]
Indeed, the fiber over $\{0\}$ is $\P(\nu_Z \oplus \mathcal{O}_Z) \setminus \P(\nu_Z)$, which is canonically isomorphic to $\nu_Z$. (This construction is known as ``deformation to the normal cone'')
The second step shows that in $\H(S)$, we have a homotopy pushout squares
\begin{useimager}
\[
\begin{tikzcd}
\dfrac{\nu_Z}{\nu_Z \setminus Z} \ar[d] & Z \ar[r] \ar[l] \ar[d] & \dfrac{X}{X \setminus Z} \ar[d]\\
\dfrac{D_ZX}{D_ZX \setminus Z \times \A^1} & Z \times \A^1 \ar[l] \ar[r] & \dfrac{D_ZX}{D_Z X\setminus Z \times \A^1}
\end{tikzcd}
\]
\end{useimager}
To prove this, one uses Nisnevich descent to reduce to the affine case.
\end{proof}
\section{Stable motivic homotopy theory}\label{chapter:stable}
The stable motivic homotopy category is obtained by inverting $\P^1$ in $\H(S)_*$:
\[
\SH(S) = \H(S)_*[(\P^1)^{-1}].
\]
More generally, suppose we have a presentably symmetric monoidal $\infty$-category $\mathcal{C}$ (i.e.\ $\mathcal{C} \in \CAlg(\PrL)$) and $X \in \mathcal{C}$. We can then define
\begin{useimager}
\[
\Stab_X(\mathcal{C}) = \colim \left(\begin{tikzcd}[column sep=large]
\mathcal{C} \ar[r, "-\otimes X"] &
\mathcal{C} \ar[r, "-\otimes X"] &
\mathcal{C} \ar[r, "-\otimes X"] &
\cdots
\end{tikzcd}\right),
\]
\end{useimager}
or equivalently
\begin{useimager}
\[
\Stab_X(\mathcal{C}) = \lim \left(\begin{tikzcd}[column sep=large]
\mathcal{C} &
\mathcal{C} \ar[l, "(-)^X"'] &
\mathcal{C} \ar[l, "(-)^X"'] &
\cdots \ar[l, "(-)^X"']
\end{tikzcd}
\right),
\]
\end{useimager}
where these (co)limits are taken in the category of large categories (or equivalently $\PrL$/$\PrR$).
\begin{thm}[Robalo]
If $X$ is \emph{symmetric}, i.e.\ the cyclic permutation on $X \otimes X \otimes X$ is homotopic to the identity, then $\Stab_X(\mathcal{C}) \in \CAlg(\PrL)$ is symmetric monoidal, and the natural map $\mathcal{C} \to \Stab_X(\mathcal{C})$ is universal among maps in $\CAlg(\PrL)$ that send $X$ to an invertible object.
\end{thm}
Note that there is always a map in $\CAlg(\PrL)$ satisfying this universal property, and $\Stab_X(\mathcal{C})$ always exists. The condition in the theorem ensures these two agree.
It is easy to check that $\P^1$ is indeed symmetric by elementary row and column operations, so we can define
\begin{defi}
$\SH(S) = \H(S)_*[(\P^1)^{-1}]$.
\end{defi}
As in the topological world, we have an adjunction
\begin{useimager}
\[
\begin{tikzcd}
\H(S)_* \ar[r, yshift = 2, "\Sigma^\infty_{\P^1}"] & \SH(S) \ar[l, yshift=-2, "\Omega^\infty_{\P^1}"]
\end{tikzcd}
\]
\end{useimager}
Note that $\Sigma^\infty_{\P^1}$ is by definition symmetric monoidal, and the fact that the tensor product preserves colimits in both variables tells us how to compute the tensor product in $\SH(S)$.
\begin{defi}
For $E \in \SH(S)$ and $i, j \in \Z$, we define
\[
\pi_{p, q}(E) = \pi_0^{\A^1}(\Omega^\infty_{\P^1}(E \wedge S^{-p, -q})).
\]
\end{defi}
Of course, these also lead to homotopy \emph{groups} given by the global sections of the homotopy sheaves.
\begin{defi}
For $E \in \SH(S)$ and $X \in (\Sm_S)_*$, and $p, q \in \Z$, we define
\[
\begin{aligned}
E_{p, q}(X) &= \pi_{p, q}(\Sigma^\infty_{\P^1} X \wedge E)\\
E^{p, q}(X) &= [\Sigma^\infty_{\P^1} X, \Sigma^{p, q} E]_{\SH(S)}.
\end{aligned}
\]
\end{defi}
We shall briefly introduce three examples of motivic spectra.
\begin{eg}
Motivic cohomology is represented by a spectrum $H\Z$. If $U$ is smooth, motivic cohomology is equivalent to Bloch's higher Chow groups:
\[
H\Z^{p, q}(U_+) \cong CH^q(U, 2q - p).
\]
There are multiple ways one can construct $H\Z$, and I shall describe three. These mimic how one constructs the classical $H\Z$. These work over any perfect field, except for the second which only produces the right spectrum when the characteristic is $0$.
\begin{enumerate}
\item Classically, we have the $\infty$-category $\Ch(\Ab)$ of chain complexes of abelian groups, and singular chains defines a natural map $i^*: \Sp \to \Ch(\Ab)$. This admits a right adjoint $i_*$, and we can define $H\Z = i_* i^* \S$.
In the motivic world, we can define the triangulated category of motives $\DM(k)$, which receives a map $\SH(S) \to \DM(k)$ and we can repeat the previous paragraph.
\item Classically, we can construct $H\Z$ as an infinite loop space directly using the Eilenberg--Maclane spaces, which one can in turn construct using the Dold--Thom theorem as $\mathrm{Sym}^\infty(S^n)$. This works motivically as well.
\item Finally, we can define $H\Z = \tau_{\leq 0} \S$. Motivically, we can define $H\Z$ as the zero slice of $\S$, which we will discuss later.
\end{enumerate}
\end{eg}
\begin{eg}
We can construct a motivic spectrum $KGL$ that represents (homotopy) $K$-theory (which agrees with algebraic $K$-theory for sufficiently nice schemes). This is obtained by constructing $BGL$ (as the colimit of Grassmannians), and then showing that $\Omega_{\P^1} (BGL \times \Z) \cong BGL \times \Z$. We then have an explicit infinite loop space.
\end{eg}
\begin{eg}
We can construct the algebraic cobordism spectrum $MGL$ in the same way as we produce $MO$ or $MU$. There is a universal vector bundle $\gamma_n \to BGL_n$. We then define
\[
MGL = \colim \Sigma^{-2n, -n} \Th(\gamma_n).
\]
\end{eg}
\section{Effective and very effective motivic spectra}\label{chapter:effective}
The category of (non-motivic) spectra admits a $t$-structure, where the connective objects $\Sp_{\geq 0}$ is the subcategory generated by $S^n$ for $n \geq 0$ under (sifted) colimits. In the motivic world, we have two kinds of spheres --- $S^1$ and $\G_m$, which makes everything bigraded. Thus, we can have different notions of connectivity depending of which spheres we use.
\begin{defi}
Let $\SH^{\eff}(S)$ be the smallest stable subcategory (closed under direct sums) of $\SH(S)$ containing all $\Sigma^\infty_{\P^1} X_+$ for $X \in \Sm_S$ and closed under colimits. This is the category of \emph{effective} spectra.
\end{defi}
The inclusion $\G_m^{\wedge n} \wedge \SH^{\eff}(S) \hookrightarrow \SH(S)$ admits a right adjoint $f_n$. This defines the \emph{slice filtration}
\[
\cdots \to f_{n + 1} E \to f_n E \to f_{n - 1} E \to \cdots.
\]
\begin{defi}
The $n$-slice of $E$, denoted $s_n E$, is defined by the cofiber sequence
\[
f_{n + 1} E \to f_n E \to s_n E.
\]
\end{defi}
On the other hand, we can only allow for non-negative powers of $S^i$ but include negative powers of $\G_m$. This in fact defines a $t$-structure on $\SH(S)$.
\begin{defi}
Let $\SH(S)_{\geq 0}$ be the subcategory of $\SH(S)$ generated by $\Sigma^\infty_{\P^1} X_+ \wedge \G_m^{-q}$ under extensions and colimits.
\end{defi}
\begin{thm}
This forms part of a $t$-structure on $\SH(S)$, called the \emph{homotopy $t$-structure}.
\end{thm}
In the case of a perfect field, but not in general, we can characterize the homotopy $t$-structure by the homotopy sheaves.
\begin{thm}
If $S = \Spec k$ and $k$ is a perfect field, then
\[
\begin{aligned}
\SH(S)_{\geq 0} &= \{ E \in \SH(S) \mid \pi_{p, q}(E) = 0\text{ whenever }p - q < 0\}\\
\SH(S)_{\leq 0} &= \{ E \in \SH(S) \mid \pi_{p, q}(E) = 0\text{ whenever }p - q> 0\}
\end{aligned}
\]
\end{thm}
Finally, we can intersect these two.
\begin{defi}
We define
\[
\SH^{\veff}(S) = \SH^{\eff}(S) \cap \SH(S)_{\geq 0}.
\]
Equivalently, it is the full subcategory of $\SH(S)$ that generated by $\Sigma^\infty_{\P^1} X_+$ and under colimits. This is the category of \emph{very effective spectra}.
\end{defi}
Since the smash product preserves colimits and $X_+ \wedge Y_+ = (X \times )_+$, we see that
\begin{prop}
$\SH(S)^{\veff}$ is closed under the smash product.
\end{prop}
\begin{eg}
$MGL$ is very effective. To show this, we have to show that for $\gamma_n \to BGL_n$ the universal vector bundle, the Thom spectrum $\Sigma^{-2n, -n} \Sigma^\infty_{\P^1}\Th(\gamma_n)$ is in very effective. This is true for rank $n$ vector bundles in general, since it is true for trivial vector bundles, and vector bundles are locally trivial.
\end{eg}
\end{document}