-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathborwein.tex
224 lines (198 loc) · 10.4 KB
/
borwein.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
\documentclass{shortart}
\usepackage{amsmath, amssymb, amsthm}
\usepackage{plastex}
\usepackage{tikz}
\title{Borwein--Borwein integrals and sums}
\author{Dexter Chua}
\newtheorem{thm}{Theorem}[section]
\newtheorem{lemma}[thm]{Lemma}
\newtheorem{cor}[thm]{Corollary}
\theoremstyle{definition}
\newtheorem{defi}[thm]{Definition}
\newtheorem{eg}[thm]{Example}
\newtheorem*{note}{Note}
\newcommand\Z{\mathbb{Z}}
\newcommand\R{\mathbb{R}}
\DeclareMathOperator\sinc{sinc}
\DeclareMathOperator\sign{sign}
\renewcommand\d{\mathrm{d}}
\begin{document}
The $\sinc$ function is defined by
\[
\sinc (x) = \frac{\sin (x)}{x}.
\]
A standard contour integral tells us
\[
\int_{-\infty}^\infty \sinc (x) \;\d x = \pi.
\]
Alternatively, we can observe that
\[
\sinc (x) = \frac{1}{2} \int_{-1}^1 e^{i k t}\;\d k.
\]
So up to some factors $\sinc x$ is the Fourier transform of the indicator function of $[-1, 1]$. The preceding integral of $\sinc x$ can be thought of as the value of the Fourier transform at $0$. Applying the Fourier inversion formula and carefully keeping track of the coefficients gives us the previous calculation.
David and Jonathan Borwein\footnote{David Borwein being the father of Jonathan Borwein} observed that we also have
\[
\begin{aligned}
\int_{-\infty}^\infty \sinc (x) \sinc \left(\frac{x}{3}\right) \;\d x &= \pi,\\
\int_{-\infty}^\infty \sinc (x) \sinc \left(\frac{x}{3}\right)\sinc \left(\frac{x}{5}\right) \;\d x &= \pi,\\
\int_{-\infty}^\infty \sinc (x) \sinc \left(\frac{x}{3}\right) \sinc \left(\frac{x}{5}\right) \sinc \left(\frac{x}{7}\right) \;\d x &= \pi.
\end{aligned}
\]
This pattern holds up until
\[
\int_{-\infty}^\infty \sinc (x) \sinc \left(\frac{x}{3}\right) \cdots \sinc \left(\frac{x}{13}\right) \;\d x = \pi.
\]
Afterwards, we have
\[
\int_{-\infty}^\infty \sinc (x) \sinc \left(\frac{x}{3}\right) \cdots \sinc \left(\frac{x}{15}\right) \;\d x = \frac{467807924713440738696537864469}{467807924720320453655260875000} \pi.
\]
As we keep going on, the value continues to decrease.
\section{Direct calculation}
Turns out it is possible to calculate the integrals above by pure brute force, and this gives explicit formulas for the integrals as we see above.
In general, let $a_0, a_1, a_2, \ldots, a_n$ be a sequence of positive real numbers, and consider the integral
\[
\int_{-\infty}^\infty \prod_{k = 0}^n \sinc (a_k x) \;\d x.
\]
Let us put aside the $\frac{1}{x}$ factors for a moment, and expand out $\prod_{k = 0}^n \sin (a_k x)$:
\[
\begin{aligned}
\prod_{k = 0}^n \sin(a_k x) &= \frac{1}{(2i)^{n + 1}} (e^{i a_0 x} - e^{-i a_0 x}) \prod_{k = 1}^n (e^{i a_k x} - e^{-i a_k x})\\
&= \frac{1}{(2i)^{n + 1}} \sum_{\gamma \in \{-1, 1\}^n} \varepsilon_\gamma (e^{i b_\gamma x} - (-1)^n e^{-i b_\gamma x}),
\end{aligned}
\]
where
\[
b_\gamma = a_0 + \sum_{k = 1}^n \gamma_k a_k,\quad \varepsilon_\gamma = \prod_{k = 1}^n \gamma_k.
\]
Note that each of the terms in the right-hand sum is some sort of trigonometric function, depending on the value of $n$ mod $2$.
The original integral was
\[
\int_{-\infty}^\infty x^{-n - 1} \prod_{k = 0}^n \sin(a_k x)\;\d x.
\]
Since $\sin(a_k x)$ has a simple zero at $x = 0$, we know from this expression that we can integrate this by parts $n$ times and have vanishing boundary terms:
\[
\int_{-\infty}^\infty x^{-n - 1} \prod_{k = 0}^n \sin (a_k x)\;\d x = \frac{1}{n!} \int_{-\infty}^\infty \frac{1}{x} \frac{\d^n}{\d x^n} \prod_{k = 0}^n \sin (a_k x)\;\d x.
\]
We now use the expression above to compute this $n$-fold derivative, and get
\[
\begin{aligned}
\int_{-\infty}^\infty \prod_{k = 0}^n \frac{\sin(a_k x)}{x} \;\d x &= \frac{1}{n!}\int_{-\infty}^\infty \frac{1}{x} \frac{1}{2^n} \sum_{\gamma \in \{-1, 1\}^n} \varepsilon_\gamma b_\gamma^n \sin (b_\gamma x) \;\d x \\
&= \frac{\pi}{2^n n!} \sum_{\gamma \in \{-1, 1\}^n} \varepsilon_\gamma b_\gamma^n \sign (b_\gamma).
\end{aligned}
\]
We claim this is equal to $\frac{\pi}{a_0}$ when $a_0 \geq \sum_{k = 1}^n a_k$, and smaller otherwise. Indeed, this is exactly the condition that all the $b_\gamma$ are positive, so that the sign term disappears. The remaining claim is then that
\[
\sum_{\gamma \in \{-1, 1\}} \varepsilon_\gamma b_\gamma^n = 2^n n! \prod_{k = 1}^n a_k.
\]
Indeed, this follows by considering the $n$\textsuperscript{th} Taylor coefficient of the equality
\[
e^{a_0 t} \prod_{k = 1}^n (e^{a_k t} - e^{- a_k t}) = \sum_{\gamma \in \{-1, 1\}^n} \varepsilon_\gamma e^{b_\gamma t},
\]
where on the left we use that $e^{a_k t} - e^{-a_k t} = 2 a_k t$.
\section{Fourier transform perspective}
The preceeding calculation was not very enlightening, but at least it gives precise numbers. There is a more enlightening approach, beginning with our previous observation that $\sinc$ is the Fourier transform of the indicator function of $[-1, 1]$, up to some factors.
To get this going, let us first get our conventions straight. We define our Fourier transforms by
\[
\mathcal{F}\{f\}(k) = \hat{f}(k) = \int_{-\infty}^\infty f(x) e^{-2\pi ikx}\;\d x
\]
Then for any function $f$, we have
\[
\int_{-\infty}^\infty f(x) \;\d x = \tilde{f}(0).
\]
Why is this useful? In general, it is difficult to say anything about the integral of products. However, the Fourier transform of a product is the convolution of the Fourier transforms, which is an operation we understand pretty well.
With our convention, we have
\[
\mathcal{F}\{\sinc a x\}(k) =
\begin{cases}
\frac{\pi}{a} & |k| < \frac{a}{2\pi}\\
0 & \text{otherwise}
\end{cases} \equiv \chi_{a/\pi} (k).
\]
Here for any $a > 0$, the function $\chi_a (x)$ is given by
\begin{center}
\begin{tikzpicture}
\draw [->] (-3, 0) -- (3, 0);
\draw [->] (0, 0) -- (0, 2.5);
\draw [dashed, blue] (-1, 0) -- (-1, 1.5);
\draw [dashed, blue] (1, 0) -- (1, 1.5);
\draw [blue, thick](-1, 1.5) -- (1, 1.5);
\draw [blue, thick](-3, 0) -- (-1, 0);
\draw [blue, thick](3, 0) -- (1, 0);
\node [below] at (1, 0) {$\frac{a}{2}$};
\node [below] at (-1, 0) {$-\frac{a}{2}$};
\node [anchor = north east] at (0, 1.5) {$\frac{1}{a}$};
\node [fill, circle, inner sep = 0, minimum size = 3] at (0, 1.5) {};
\end{tikzpicture}
\end{center}
Note that the area under $\chi_a$ is always $1$. Fourier transforms take products to convolutions, and convolving with $\chi_a$ is pretty simple:
\[
(\chi_a * f)(x) = \frac{1}{a} \int_{x - a/2}^{x + a/2} f(u) \;\d u.
\]
In words, the value of $\chi_a * f$ at $x$ is the average of the values of $f$ in $[x - a/2, x + a/2]$.
With this in mind, we can look at
\[
\int_{-\infty}^\infty \prod_{k = 0}^n \sinc (a_k x)\;\d x = (\chi_{a_0/\pi} * \chi_{a_1/\pi} * \cdots * \chi_{a_n/\pi})(0).
\]
We start with the function $\chi_{a_0}$, which is depicted above. Convolving with $\chi_{a_1}$ gives a piecewise linear function
\begin{center}
\begin{tikzpicture}
\draw [->] (-3, 0) -- (3, 0);
\draw [->] (0, 0) -- (0, 2.5);
\draw [blue, thick] (-3, 0) -- (-1.3, 0) -- (-0.7, 1.5) -- (0.7, 1.5) -- (1.3, 0) -- (3, 0);
\end{tikzpicture}
\end{center}
Crucially, when $a_1 \leq a_0$, the value at $0$ is unchanged, since the function is constant on $\frac{1}{\pi}[-a_0, a_0] \supseteq \frac{1}{\pi}[-a_1, a_1]$. The resulting function is constantly $\frac{\pi}{a_0}$ on the interval $\frac{1}{\pi}[-(a_0 - a_1), a_0 - a_1]$.
When we further convolve with $\chi_{a_2/\pi}$, if $a_1 + a_2 \leq a_0$, the resulting function is constantly $\frac{\pi}{a_0}$ on the interval $\frac{1}{\pi}[-(a_0 - a_1 - a_2), a_0 - a_1 - a_2]$. In general, this tells us that as long as $a_0 \geq a_1 + \cdots + a_n$, the integral will still be $\frac{\pi}{a_0}$, and gets smaller afterwards.
\section{Sums}
Let us move on to the series version. We also claim that
\[
\sum_{n \in \Z} \sinc(n) = \pi.
\]
We also have
\[
\begin{aligned}
\sum_{n \in \Z} \sinc(n) \sinc\left(\frac{n}{3}\right) &= \pi\\
\sum_{n \in \Z} \sinc(n) \sinc\left(\frac{n}{3}\right)\sinc\left(\frac{n}{5}\right) &= \pi.
\end{aligned}
\]
This continues to hold until $\sinc (\frac{x}{13})$ but fails when we include the $\sinc \left(\frac{x}{15}\right)$ term. Coincidence? We might hope, na\"ively, that the correct result is
\[
\sum_{n \in \Z} \prod_{k = 0}^N \sinc \left(\frac{n}{2k + 1}\right) = \int_{-\infty}^\infty \prod_{k = 0}^N \sinc\left(\frac{x}{2k + 1}\right) \;\d x.
\]
This is in fact true, for $N\leq 40248$. Number theorists will be delighted to learn that this follows from the Poisson summation formula.
\begin{thm}[Poisson summation formula]
Let $f: \R \to \R$ be compactly supported, piecewise continuous and continuous at integer points. Then
\[
\sum_{n \in \Z} f(n) = \sum_{n \in \Z} \hat{f}(n).
\]
\end{thm}
The previous observation follows from taking $f(x) = \mathcal{F}\left\{\prod_{k = 0}^N \sinc \left(\frac{x}{2k + 1}\right)\right\}$, which satisfies the hypothesis of the theorem (it is in fact continuous for $n > 0$). The Fourier inversion theorem then tells us $\hat{f}(-x) = \prod_{k = 0}^N \sinc \left(\frac{x}{2k + 1}\right)$. So the right-hand side is the sum in question, and $f(0)$ is the Borwein integral. Our previous analysis shows that the support of $\hat{f}$ is $\frac{1}{2\pi}[-(a_0 + \cdots + a_n), (a_0 + \cdots + a_n)]$. So $\hat{f}$ vanishes at non-negative integers whenever $\sum \frac{1}{2k + 1} < 2\pi$.
\begin{note}
It is common for the theorem to be stated for Schwarz functions instead. However, our function is not smooth, but the same proof goes through under our hypothesis.
\end{note}
\begin{cor}
\[
\sum_{n \in \Z} \prod_{k = 0}^N \sinc a_k n = \int_{-\infty}^\infty \prod_{k = 0}^N \sinc a_k x \;\d x.
\]
if $\sum a_k < 2\pi$.
\end{cor}
\begin{proof}[Proof of theorem]
Set
\[
g(x) = \sum_{n \in \Z} f(x + n).
\]
Then, $g(0) = \sum_{n \in \Z} f(n)$. Note that the sum converges since $g$ is compactly supported, and is continuous at $0$ since $f$ is continuous at integer points. Of course, it is also piecewise continuous, since in each open neighbourhood, the sum is finite. So we know the Fourier series of $g$ converges at $0$. Recall that the Fourier series is
\[
g(x) = \sum_{k \in \Z} \hat{g}_k e^{2\pi i k x},
\]
where
\begin{multline*}
\hat{g}_k = \int_{\R/\Z} e^{-2\pi i k x} g(x) \;\d x \\
= \sum_{a \in \Z^n} \int_{[0, 1]} e^{-2\pi i k x} f(x + a)\;\d x = \int_\R e^{-2\pi i k x} f(x) \;\d x = \hat{f}(k).
\end{multline*}
So
\[
\sum_{n \in \Z} f(n) = g(0) = \sum_{k \in \Z} \hat{g}_k = \sum_{k \in \Z} \hat{f}(k).\qedhere
\]
\end{proof}
\end{document}