-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
127 lines (94 loc) · 3.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import logging
import os
import random
import numpy as np
import torch
from seqeval.metrics import f1_score, precision_score, recall_score
from transformers import (
AutoTokenizer,
RobertaConfig,
# XLMRobertaConfig,
# XLMRobertaTokenizer,
)
# from model import JointPhoBERT, JointXLMR
from model import PhoBERT
MODEL_CLASSES = {
# "xlmr": (XLMRobertaConfig, JointXLMR, XLMRobertaTokenizer),
# "phobert": (RobertaConfig, JointPhoBERT, AutoTokenizer),
"phobert": (RobertaConfig, PhoBERT, AutoTokenizer),
}
MODEL_PATH_MAP = {
# "xlmr": "xlm-roberta-base",
"phobert": "vinai/phobert-base",
}
# def get_intent_labels(args):
# return [
# label.strip()
# for label in open(os.path.join(args.data_dir, args.token_level, args.intent_label_file), "r", encoding="utf-8")
# ]
def get_slot_labels(args):
return [
label.strip()
for label in open(os.path.join(args.data_dir, args.token_level, args.slot_label_file), "r", encoding="utf-8")
]
def load_tokenizer(args):
return MODEL_CLASSES[args.model_type][2].from_pretrained(args.model_name_or_path)
def init_logger():
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.no_cuda and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
# def compute_metrics(intent_preds, intent_labels, slot_preds, slot_labels):
# assert len(intent_preds) == len(intent_labels) == len(slot_preds) == len(slot_labels)
# results = {}
# # intent_result = get_intent_acc(intent_preds, intent_labels)
# slot_result = get_slot_metrics(slot_preds, slot_labels)
# # sementic_result = get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels)
# # mean_intent_slot = (intent_result["intent_acc"] + slot_result["slot_f1"]) / 2
# # results.update(intent_result)
# results.update(slot_result)
# # results.update(sementic_result)
# # results["mean_intent_slot"] = mean_intent_slot
# return results
def compute_metrics(slot_preds, slot_labels):
assert len(slot_preds) == len(slot_labels)
results = {}
slot_result = get_slot_metrics(slot_preds, slot_labels)
results.update(slot_result)
return results
def get_slot_metrics(preds, labels):
assert len(preds) == len(labels)
return {
"slot_precision": precision_score(labels, preds),
"slot_recall": recall_score(labels, preds),
"slot_f1": f1_score(labels, preds),
}
# def get_intent_acc(preds, labels):
# acc = (preds == labels).mean()
# return {"intent_acc": acc}
def read_prediction_text(args):
return [text.strip() for text in open(os.path.join(args.pred_dir, args.pred_input_file), "r", encoding="utf-8")]
# def get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels):
# """For the cases that intent and all the slots are correct (in one sentence)"""
# # Get the intent comparison result
# intent_result = intent_preds == intent_labels
# # Get the slot comparision result
# slot_result = []
# for preds, labels in zip(slot_preds, slot_labels):
# assert len(preds) == len(labels)
# one_sent_result = True
# for p, l in zip(preds, labels):
# if p != l:
# one_sent_result = False
# break
# slot_result.append(one_sent_result)
# slot_result = np.array(slot_result)
# semantic_acc = np.multiply(intent_result, slot_result).mean()
# return {"semantic_frame_acc": semantic_acc}