-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrim_square.py
73 lines (58 loc) · 2.63 KB
/
trim_square.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import warnings
warnings.simplefilter('ignore', UserWarning)
import os
import cv2
import torch
import mmcv
from mmtrack.apis import inference_sot, init_model
from mim.commands.download import download
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--video', type=str, default='video', help='video file name')
parser.add_argument('--skip', type=int, default=1, help='skip')
parser.add_argument('--mergin', type=int, default=0, help='mergin')
args = parser.parse_args()
video_fname = args.video
save_fname = os.path.splitext(os.path.basename(video_fname))[0]
skip = args.skip
mergin = args.mergin
def tracking():
os.makedirs(save_fname, exist_ok=True)
# load model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
os.makedirs('models', exist_ok=True)
checkpoint_name = 'siamese_rpn_r50_20e_lasot'
checkpoint = download(package='mmtrack', configs=[checkpoint_name], dest_root="models")[0]
model = init_model(os.path.join('models', checkpoint_name + '.py'), os.path.join('models', checkpoint), device=device)
# tracking
frames = mmcv.VideoReader(video_fname)
h = frames.height
w = frames.width
source_window = "draw_rectangle"
cv2.namedWindow(source_window)
rect = cv2.selectROI(source_window, frames[0], False, False)
# rect:(x1, y1, w, h)
# convert (x1, y1, w, h) to (x1, y1, x2, y2)
rect_convert = (rect[0], rect[1], rect[0]+rect[2], rect[1]+rect[3])
cv2.destroyAllWindows()
for frame_index, frame in enumerate(frames):
result = inference_sot(model, frame, rect_convert, frame_id=frame_index)
if frame_index % skip == 0:
bbox = result['track_bboxes']
# bbox:(x1, y1, x2, y2)
center_x = int((bbox[0] + bbox[2]) / 2)
center_y = int((bbox[1] + bbox[3]) / 2)
rect_width = bbox[2] - bbox[0]
rect_height = bbox[3] - bbox[1]
square_width = max(rect_width, rect_height)
square_width_half = int(square_width / 2)
new_x1 = center_x - square_width_half - mergin
new_x2 = center_x + square_width_half + mergin
new_y1 = center_y - square_width_half - mergin
new_y2 = center_y + square_width_half + mergin
if new_x1 >= 0 and new_x2 <= w and new_y1 >= 0 and new_y2 <= h:
filename = f'{save_fname}_{frame_index}.png'
trim_image = frame[new_y1:new_y2, new_x1:new_x2, :]
cv2.imwrite(os.path.join(save_fname, filename), trim_image)
if __name__ == '__main__':
tracking()