-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext2img.py
166 lines (149 loc) · 4.64 KB
/
text2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import argparse
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
def main(args):
model_id = args.model_id
scheduler = args.scheduler
scale_list = args.scale
steps = args.steps
seed = args.seed
vae_folder = args.vae
width = args.width
height = args.height
if os.path.isfile(args.prompt):
print(f'reading prompts from {args.prompt}')
with open(args.prompt, 'r') as f:
prompt = f.readlines()
prompt = [x.strip() for x in prompt if x.strip() != '']
prompt = ', '.join(prompt)
else:
prompt = '1girl, best quality, extremely detailed'
if os.path.isfile(args.negative_prompt):
print(f'reading negative prompts from {args.negative_prompt}')
with open(args.negative_prompt, 'r') as f:
negative_prompt = f.readlines()
negative_prompt = [x.strip() for x in negative_prompt if x.strip() != '']
negative_prompt = ','.join(negative_prompt)
else:
negative_prompt = None
if vae_folder is not None:
vae = AutoencoderKL.from_pretrained(vae_folder, torch_dtype=torch.float16).to('cuda')
vae_name = vae_folder.split("/")[-1]
else:
vae = AutoencoderKL.from_pretrained(model_id, subfolder='vae', torch_dtype=torch.float16).to('cuda')
vae_name = "none"
pipe = DiffusionPipeline.from_pretrained(
model_id,
safety_checker=None,
vae=vae,
torch_dtype=torch.float16)
scheduler = opt.scheduler
match scheduler:
case 'multistepdpm':
from diffusers import DPMSolverMultistepScheduler
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
case 'eulera':
from diffusers import EulerAncestralDiscreteScheduler
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
case _:
None
pipe.to("cuda")
os.makedirs('results', exist_ok=True)
print(f'prompt: {prompt}')
print(f'negative prompt: {negative_prompt}')
scale_list = opt.scale
steps = opt.steps
for i in range(opt.n_samples):
for scale in scale_list:
seed = opt.seed + i
generator = torch.manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
generator = generator,
guidance_scale = scale,
num_inference_steps = steps,
num_images_per_prompt = 1,
width = width,
height = height).images[0]
image.save(os.path.join('results', f'{scheduler}_vae{vae_name}_seed{seed}_scale{scale}_steps{steps}.png'))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_id',
type=str,
default='CompVis/stable-diffusion-v1-4',
help='model id of the pipeline',
)
parser.add_argument(
'--prompt',
type=str,
default='prompt.txt',
help='path to prompt file',
)
parser.add_argument(
'--negative_prompt',
type=str,
default='negative_prompt.txt',
help='path to negative_prompt file',
)
parser.add_argument(
'--seed',
type=int,
default=200,
help='the seed (for reproducible sampling)',
)
parser.add_argument(
'--n_samples',
type=int,
default=1,
help='how many samples to produce for each given prompt',
)
parser.add_argument(
'--scale',
nargs="*",
default=[7.5],
type=float,
help='guidance_scale',
)
parser.add_argument(
'--steps',
type=int,
default=50,
help='num_inference_steps',
)
parser.add_argument(
'--scheduler',
type=str,
default='pndm',
choices=['pndm', 'multistepdpm', 'eulera']
)
parser.add_argument(
'--vae',
type=str,
help='vae'
)
parser.add_argument(
'--width',
type=int,
default=512,
help='width'
)
parser.add_argument(
'--height',
type=int,
default=512,
help='height'
)
opt = parser.parse_args()
main(opt)
'''
python text2img.py ^
--model model/Counterfeit-V2.0 ^
--vae vae/anime2_vae ^
--scheduler eulera ^
--prompt prompt.txt ^
--width 768 --height 512 ^
--n_samples 10
'''