forked from louaaron/Score-Entropy-Discrete-Diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_train.py
269 lines (203 loc) · 9.39 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import datetime
import os
import os.path
import gc
from itertools import chain
import numpy as np
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.nn.functional as F
import data
import losses
import sampling
import graph_lib
import noise_lib
import utils
from model import SEDD
from model.ema import ExponentialMovingAverage
from transformers import GPT2TokenizerFast, GPT2LMHeadModel
torch.backends.cudnn.benchmark = True
# torch.autograd.set_detect_anomaly(True)
def setup(rank, world_size, port):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(port)
# initialize the process group
dist.init_process_group(
"nccl", rank=rank, world_size=world_size, timeout=datetime.timedelta(minutes=30)
)
def cleanup():
dist.destroy_process_group()
def run_multiprocess(rank, world_size, cfg, port):
try:
setup(rank, world_size, port)
_run(rank, world_size, cfg)
finally:
cleanup()
def _run(rank, world_size, cfg):
torch.cuda.set_device(rank)
work_dir = cfg.work_dir
# Create directories for experimental logs
sample_dir = os.path.join(work_dir, "samples")
checkpoint_dir = os.path.join(work_dir, "checkpoints")
checkpoint_meta_dir = os.path.join(work_dir, "checkpoints-meta", "checkpoint.pth")
if rank == 0:
utils.makedirs(sample_dir)
utils.makedirs(checkpoint_dir)
utils.makedirs(os.path.dirname(checkpoint_meta_dir))
# logging
if rank == 0:
logger = utils.get_logger(os.path.join(work_dir, "logs"))
def mprint(msg):
if rank == 0:
logger.info(msg)
mprint(work_dir)
mprint(cfg)
device = torch.device(f"cuda:{rank}" if torch.cuda.is_available() else "cpu")
if device.type == "cuda":
mprint("Found {} CUDA devices.".format(torch.cuda.device_count()))
for i in range(torch.cuda.device_count()):
props = torch.cuda.get_device_properties(i)
mprint(
"{} \t Memory: {:.2f}GB".format(
props.name, props.total_memory / (1024 ** 3)
)
)
else:
mprint("WARNING: Using device {}".format(device))
mprint(f"Found {os.cpu_count()} total number of CPUs.")
# build token graph
graph = graph_lib.get_graph(cfg, device)
# build score model
score_model = SEDD(cfg).to(device)
score_model = DDP(score_model, device_ids=[rank], static_graph=True, find_unused_parameters=True)
num_parameters = sum(p.numel() for p in score_model.parameters())
mprint(f"Number of parameters in the model: {num_parameters}")
ema = ExponentialMovingAverage(
score_model.parameters(), decay=cfg.training.ema)
mprint(score_model)
mprint(f"EMA: {ema}")
# build noise
noise = noise_lib.get_noise(cfg).to(device)
noise = DDP(noise, device_ids=[rank], static_graph=True)
sampling_eps = 1e-5
# build optimization state
optimizer = losses.get_optimizer(cfg, chain(score_model.parameters(), noise.parameters()))
mprint(f"Optimizer: {optimizer}")
scaler = torch.cuda.amp.GradScaler()
mprint(f"Scaler: {scaler}")
state = dict(optimizer=optimizer, scaler=scaler, model=score_model, noise=noise, ema=ema, step=0)
# load in state
state = utils.restore_checkpoint(checkpoint_meta_dir, state, device)
initial_step = int(state['step'])
# original tokenizer:
#tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
# protein tokenizer
#tokenizer = data.CharacterTokenizer()
from collections import OrderedDict
from transformers import GPT2TokenizerFast
import json
# Define amino acids and special tokens
amino_acids = list("ACDEFGHIKLMNPQRSTVWY")
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
all_tokens = special_tokens + amino_acids
# Create the vocabulary
vocab = OrderedDict((token, idx) for idx, token in enumerate(all_tokens))
# Save the vocabulary
with open('vocab.json', 'w') as f:
json.dump(vocab, f)
# Create an empty merges.txt file
with open('merges.txt', 'w') as f:
f.write('#version: 0.2\n')
# Initialize the tokenizer
tokenizer = GPT2TokenizerFast(
vocab_file='vocab.json',
merges_file='merges.txt',
bos_token='<s>',
eos_token='</s>',
unk_token='<unk>',
pad_token='<pad>',
mask_token='<mask>'
)
# Build data iterators
train_ds, eval_ds = data.get_dataloaders(cfg)
# mprint(f"Length of datasets: {len(train_ds)}, {len(eval_ds)}")
train_iter = iter(train_ds)
eval_iter = iter(eval_ds)
# Build one-step training and evaluation functions
optimize_fn = losses.optimization_manager(cfg)
train_step_fn = losses.get_step_fn(noise, graph, True, optimize_fn, cfg.training.accum)
eval_step_fn = losses.get_step_fn(noise, graph, False, optimize_fn, cfg.training.accum)
if cfg.training.snapshot_sampling:
sampling_shape = (cfg.training.batch_size // (cfg.ngpus * cfg.training.accum), cfg.model.length)
sampling_fn = sampling.get_sampling_fn(cfg, graph, noise, sampling_shape, sampling_eps, device)
num_train_steps = cfg.training.n_iters
mprint(f"Starting training loop at step {initial_step}.")
while state['step'] < num_train_steps + 1:
step = state['step']
if cfg.data.train != "text8":
batch = next(train_iter)['input_ids'].to(device)
else:
batch = next(train_iter).to(device)
#print(torch.argmax(batch))
#print(f"Batch shape: {batch.shape}, dtype: {batch.dtype}, device: {batch.device}")
#print(f"Batch min: {batch.min().item()}, max: {batch.max().item()}")
loss = train_step_fn(state, batch)
# flag to see if there was movement ie a full batch got computed
if step != state['step']:
if step % cfg.training.log_freq == 0:
dist.all_reduce(loss)
loss /= world_size
mprint("step: %d, training_loss: %.5e" % (step, loss.item()))
if step % cfg.training.snapshot_freq_for_preemption == 0 and rank == 0:
utils.save_checkpoint(checkpoint_meta_dir, state)
if step % cfg.training.eval_freq == 0:
if cfg.data.valid != "text8":
eval_batch = next(eval_iter)['input_ids'].to(device)
else:
eval_batch = next(train_iter).to(device)
eval_loss = eval_step_fn(state, eval_batch)
dist.all_reduce(eval_loss)
eval_loss /= world_size
mprint("step: %d, evaluation_loss: %.5e" % (step, eval_loss.item()))
if step > 0 and step % cfg.training.snapshot_freq == 0 or step == num_train_steps:
# Save the checkpoint.
save_step = step // cfg.training.snapshot_freq
if rank == 0:
utils.save_checkpoint(os.path.join(
checkpoint_dir, f'checkpoint_{save_step}.pth'), state)
# Generate and save samples
if cfg.training.snapshot_sampling:
mprint(f"Generating text at step: {step}")
this_sample_dir = os.path.join(sample_dir, "iter_{}".format(step))
utils.makedirs(this_sample_dir)
ema.store(score_model.parameters())
ema.copy_to(score_model.parameters())
sample = sampling_fn(score_model)
ema.restore(score_model.parameters())
sentences = tokenizer.batch_decode(sample)
file_name = os.path.join(this_sample_dir, f"sample_{rank}.txt")
with open(file_name, 'w') as file:
for sentence in sentences:
file.write(sentence + "\n")
file.write("============================================================================================\n")
if cfg.eval.perplexity:
with torch.no_grad():
pass
# Let's think about how to evaluate this
# eval_model = GPT2LMHeadModel.from_pretrained("gpt2-large").to(device).eval()
# batches = sample.shape[0] // cfg.eval.perplexity_batch_size
# total_perplexity = 0
# for i in range(batches):
# s = sample[i * cfg.eval.perplexity_batch_size:(i + 1) * cfg.eval.perplexity_batch_size]
# print(s)
# loss, logits = eval_model(s, labels=s)[:2]
# logits = logits.transpose(-1, -2)
# perplexity = F.cross_entropy(logits[..., :-1], s[..., 1:], reduction="none").mean(dim=-1).exp().mean()
# total_perplexity += perplexity
# total_perplexity /= batches
# dist.all_reduce(total_perplexity)
# total_perplexity /= world_size
# mprint(f"Generative Perplexity at step: {step}. Perplexity: {total_perplexity:.3f}.")
# del eval_model, logits, loss
dist.barrier()