-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathobjDetect_test.py
171 lines (117 loc) · 4.93 KB
/
objDetect_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import time
import picamera
import numpy as np
import Image
import io
import copy
import sys
# set recursion depth higher than the default of 1000. will avoid with tweaking later
sys.setrecursionlimit(2000)
imageParams = {
'width': 320,
'height': 240,
# the initial points for the pixel analysis loop
'startRow': 0,
'startCol': 0,
'minSquareSearchSize': 6, # square search block in pixels
# the imageParams['stream'] object to capture to
'stream': io.BytesIO()
}
# pixel test parameters
pixelTestParams = {
0: { 'testVal': 85, 'dir': 1 }, # red pixel
1: { 'testVal': 85, 'dir': 1 }, # green pixel
2: { 'testVal': -60, 'dir': -1 } # blue pixel
}
numTests = len(pixelTestParams)
testNum = 2 # keep track of which test failed. defaults to 2 (the requirement on the B pixel)
# add all tested pixels to this array
testedPixels = []
# recursively test pixels until the wrong colour is found or end of image is reached
def rDetectPixels(im, i, j):
if i >= imageParams['height']: return
if j >= imageParams['width']: return
if testPixel(im, i, j) == True:
im[i][j] = [0, 0, 0]
rDetectPixels(im, i, j - imageParams['minSquareSearchSize'] )
rDetectPixels(im, i, j + imageParams['minSquareSearchSize'] )
rDetectPixels(im, i - imageParams['minSquareSearchSize'], j)
rDetectPixels(im, i + imageParams['minSquareSearchSize'], j)
# increment to the next test in the dict
def nextTestNum(x):
x += 1
if x == numTests: return 0
else: return x
# test if pixel satisfies the pixelTestParams
def testPixel(im, i, j):
'''
global testNum
if pixelTestParams[testNum]['dir'] * im[i][j][testNum] >= pixelTestParams[testNum]['testVal']: # test 1
testNum = nextTestNum(testNum)
if pixelTestParams[testNum]['dir'] * im[i][j][testNum] >= pixelTestParams[testNum]['testVal']: # test 2
testNum = nextTestNum(testNum)
if pixelTestParams[testNum]['dir'] * im[i][j][testNum] >= pixelTestParams[testNum]['testVal']: # test 3
'''
if int(im[i][j][0]) - int(im[i][j][2]) > 80 and int(im[i][j][1]) - int(im[i][j][2]) > 80 : # test if it is not a proper shade
#im[i][j] = [0, 0, 0]
return True
#im[i][j] = [255, 255, 255]
return False
def processImage(imageParams):
# rewind the imageParams['stream'] for reading
imageParams['stream'].seek(0)
# load the data to a numpy array
image = np.fromstring(imageParams['stream'].getvalue(), dtype=np.uint8).reshape((imageParams['height'], imageParams['width'], 3))
image2 = copy.deepcopy(image)
t = time.time()
# scan the image
numRowsScanned = 0 # this is so that we can start at an arbitrary row but still wrap around if necessary
detectedPoints = [] # the set of detected points satisfying the pixel criteria pixelTestParams
numI = 0 # number of tests performed
# flag to break through all loops (will make into a function after)
bBreakLoop = False
# loop to crudely find the object. will recursively identify all points after the object is found
i = imageParams['startRow'] # start row. this is so in successive frames we can start at a predicted row to reduce computation
while i < imageParams['height'] -1:
if i > imageParams['height']: i = 0 # wrap to the first row if the end was reached
ptsFoundCurrentRow = []
if i == imageParams['startRow']: j = imageParams['startCol']
else: j = 0
while j < imageParams['width']:
# perform the pixel colour tests
#numI += 1
if testPixel(image2, i, j) == True:
detectedPoints.append([i, j])
ptsFoundCurrentRow.append(j)
if len(ptsFoundCurrentRow) == 3: # 3 consecutive points found, assume object is found
bBreakLoop = True
break
image2[i][j] = [0, 0, 0]
j += imageParams['minSquareSearchSize']
if bBreakLoop: break
i += imageParams['minSquareSearchSize']
numRowsScanned += imageParams['minSquareSearchSize']
if len(detectedPoints) == 0: imageParams['startRow'] = 0
else:
rDetectPixels(image2, i, j)
# calculate approximate midpoint of balloon and the standard deviation
mean = np.mean(detectedPoints, axis=0) # midpoint
print mean
std = np.std(detectedPoints, axis=0) # used to predict the start row/column for the next image
imageParams['startRow'] = int(mean[0])
imageParams['startCol'] = int(mean[1])
if imageParams['startRow'] < 0: imageParams['startRow'] = 0
if imageParams['startCol'] < 0: imageParams['startCol'] = 0
print str(time.time()) + ": Current estimated framerate: " + str(1 / (time.time() - t))
# dump to file
Image.fromarray(image2, 'RGB').save(str(time.time()) + ".png")
# loop to keep taking pictures and analyzing them
with picamera.PiCamera() as camera:
camera.resolution = (imageParams['width'], imageParams['height'])
camera.vflip = True # vertical flip
camera.exposure_mode = 'night'
#time.sleep(2)
#camera.capture_sequence(imageParams['stream']Gen(), 'rgb', use_video_port=True) # capture in rgb format
for stream in camera.capture_continuous(imageParams['stream'], 'rgb', use_video_port=True):
processImage(imageParams)
time.sleep(0.01)