forked from styler00dollar/VSGAN-tensorrt-docker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolor_transfer.py
executable file
·1226 lines (1003 loc) · 44.5 KB
/
color_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# https://github.com/hahnec/color-matcher
# https://github.com/victorca25/traiNNer (color_transfer.py)
import cv2
import numpy as np
import argparse
import os
from tqdm import tqdm
from color_matcher import ColorMatcher, __version__
from color_matcher.io_handler import load_img_file
from color_matcher.normalizer import Normalizer
cm = ColorMatcher()
'''
Script to apply color transfer from a source reference image to a target input image
Theory:
https://www.scss.tcd.ie/Rozenn.Dahyot/pdf/pitie08bookchapter.pdf
https://www.cse.cuhk.edu.hk/leojia/all_final_papers/color_cvpr05.PDF
http://www.inf.ed.ac.uk/teaching/courses/vis/lecture_notes/lecture6.pdf
'''
def read_image(image):
if isinstance(image, str):
# read images as BGR
return cv2.imread(image, cv2.IMREAD_COLOR)
elif isinstance(image, np.ndarray):
# use np image
return image
#elif pil .Image...:
else:
raise ValueError("Unexpected image type. Either a path or a np.ndarray are supported")
def scale_img(source=None, target=None):
"""
Scale a source image to the same size as a target image
"""
#raise ValueError("source and target shapes must be equal")
#expand source to target size
width = int(target.shape[1])
height = int(target.shape[0])
dim = (width, height)
return cv2.resize(source, dim, interpolation = cv2.INTER_AREA)
def expand_img(image=None):
# expand dimensions if grayscale
if len(image.shape) < 3:
return image[:,:,np.newaxis]
else:
return image
def _imstats(image, calc='direct'):
"""
Calculate mean and standard deviation of an image along each channel.
Using individual channels there's a very small difference with array forms,
doesn't change the results
Parameters:
-------
image: NumPy array OpenCV image
calc: how to perform the canculation (differences are minimal,
only included for completion)
Returns:
-------
Mean (mu) and standard deviations (sigma)
"""
if calc == 'reshape':
# reshape image from (H x W x 3) to (3 x HW) for vectorized operations
image = image.astype("float32").reshape(-1, 3).T
# calculate mean
mu = np.mean(image, axis=1, keepdims=False)
# calculate standard deviation
sigma = np.std(image, axis=1, keepdims=False)
elif calc == 'direct':
# calculate mean
mu = np.mean(image, axis=(0, 1), keepdims=True)
# calculate standard deviation
sigma = np.std(image, axis=(0, 1), keepdims=True)
elif calc == 'split':
# compute the mean and standard deviation of each channel independently
(l, a, b) = cv2.split(image)
(lMean, lStd) = (l.mean(), l.std())
(aMean, aStd) = (a.mean(), a.std())
(bMean, bStd) = (b.mean(), b.std())
mu = [lMean, aMean, bMean]
sigma = [lStd, aStd, bStd]
# return the color statistics
return (mu, sigma)
def _scale_array(arr, clip=True, new_range=(0, 255)):
"""
Trim NumPy array values to be in [0, 255] range with option of
clipping or scaling.
Parameters:
-------
arr: array to be trimmed to new_range (default: [0, 255] range)
clip: if True, array will be limited with np.clip.
if False then input array will be min-max scaled to
range [max([arr.min(), 0]), min([arr.max(), 255])]
by default
new_range: range to be used for scaling
Returns:
-------
NumPy array that has been scaled to be in [0, 255] range
"""
if clip:
# scaled = arr.copy()
# scaled[scaled < 0] = 0
# scaled[scaled > 255] = 255
scaled = np.clip(arr, new_range[0], new_range[1])
# scaled = np.clip(arr, 0, 255)
else:
scale_range = (max([arr.min(), new_range[0]]), min([arr.max(), new_range[1]]))
scaled = _min_max_scale(arr, new_range=new_range)
return scaled
def _min_max_scale(arr, new_range=(0, 255)):
"""
Perform min-max scaling to a NumPy array
Parameters:
-------
arr: NumPy array to be scaled to [new_min, new_max] range
new_range: tuple of form (min, max) specifying range of
transformed array
Returns:
-------
NumPy array that has been scaled to be in
[new_range[0], new_range[1]] range
"""
# get array's current min and max
mn = arr.min()
mx = arr.max()
# check if scaling needs to be done to be in new_range
if mn < new_range[0] or mx > new_range[1]:
# perform min-max scaling
scaled = (new_range[1] - new_range[0]) * (arr - mn) / (mx - mn) + new_range[0]
else:
# return array if already in range
scaled = arr
return scaled
def im2double(im):
if im.dtype == 'uint8':
out = im.astype('float') / 255
elif im.dtype == 'uint16':
out = im.astype('float') / 65535
elif im.dtype == 'float':
out = im
else:
assert False
out = np.clip(out, 0, 1)
return out
def bgr2ycbcr(img, only_y=True):
'''bgr version of matlab rgb2ycbcr
Python opencv library (cv2) cv2.COLOR_BGR2YCrCb has
different parameters with MATLAB color convertion.
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img_ = img.astype(np.float32)
if in_img_type != np.uint8:
img_ *= 255.
# convert
if only_y:
# mat = [24.966, 128.553, 65.481])
# rlt = np.dot(img_ , mat)/ 255.0 + 16.0
rlt = np.dot(img_ , [24.966, 128.553, 65.481]) / 255.0 + 16.0
else:
# mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112.0]])
# mat = mat.T/255.0
# offset = np.array([[[16, 128, 128]]])
# rlt = np.dot(img_, mat) + offset
# rlt = np.clip(rlt, 0, 255)
## rlt = np.rint(rlt).astype('uint8')
rlt = np.matmul(img_ , [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
# to make ycrcb like cv2
# rlt = rlt[:, :, (0, 2, 1)]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def ycbcr2rgb_(img):
'''same as matlab ycbcr2rgb
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img_ = img.astype(np.float32)
if in_img_type != np.uint8:
img_ *= 255.
# convert
rlt = np.matmul(img_ , [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
# xform = np.array([[1, 0, 1.402], [1, -0.34414, -.71414], [1, 1.772, 0]])
# img_[:, :, [1, 2]] -= 128
# rlt = img_.dot(xform.T)
np.putmask(rlt, rlt > 255, 255)
np.putmask(rlt, rlt < 0, 0)
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def ycbcr2rgb(img, only_y=True):
'''
bgr version of matlab ycbcr2rgb
Python opencv library (cv2) cv2.COLOR_YCrCb2BGR has
different parameters with MATLAB color convertion.
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img_ = img.astype(np.float32)
if in_img_type != np.uint8:
img_ *= 255.
# to make ycrcb like cv2
# rlt = rlt[:, :, (0, 2, 1)]
# convert
mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112.0]])
mat = np.linalg.inv(mat.T) * 255
offset = np.array([[[16, 128, 128]]])
rlt = np.dot((img_ - offset), mat)
rlt = np.clip(rlt, 0, 255)
## rlt = np.rint(rlt).astype('uint8')
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def replace_channels(source=None, target=None, ycbcr = True, hsv = False, transfersv = False):
"""
Extracts channels from source img and replaces the same channels
from target, then returns the converted image.
Args:
target: bgr numpy array of input image.
source: bgr numpy array of reference image.
ycbcr: replace the color channels (Cb and Cr)
hsv: replace the hue channel
transfersv: if using hsv option, can also transfer the
mean/std of the S and V channels
Returns:
target: transfered bgr numpy array of input image.
"""
target = read_image(target)
source = read_image(source)
if source.shape != target.shape:
source = scale_img(source, target)
if ycbcr:
# ycbcr_in = bgr2ycbcr(target, only_y=False)
ycbcr_in = cv2.cvtColor(target, cv2.COLOR_BGR2YCR_CB)
# if keep_y:
y_in, _, _ = cv2.split(ycbcr_in)
# ycbcr_ref = bgr2ycbcr(source, only_y=False)
ycbcr_ref = cv2.cvtColor(source, cv2.COLOR_BGR2YCR_CB)
# if histo_match:
# ycbcr_ref = histogram_matching(reference=ycbcr_ref, image=ycbcr_in)
# ycbcr_out = stats_transfer(target=ycbcr_in, source=ycbcr_ref)
# if keep_y:
_, cb_out, cr_out = cv2.split(ycbcr_ref)
ycbcr_out = cv2.merge([y_in, cb_out, cr_out])
# target = ycbcr2rgb(ycbcr_out)
target = cv2.cvtColor(ycbcr_out, cv2.COLOR_YCR_CB2BGR)
if hsv:
hsv_in = cv2.cvtColor(target, cv2.COLOR_BGR2HSV)
_, s_in, v_in = cv2.split(hsv_in)
# h_in, s_in, v_in = cv2.split(hsv_in)
hsv_ref = cv2.cvtColor(source, cv2.COLOR_BGR2HSV)
h_out, _, _ = cv2.split(hsv_ref)
if transfersv:
hsv_out = stats_transfer(target=hsv_in, source=hsv_ref)
_, s_out, v_out = cv2.split(hsv_out)
hsv_out = cv2.merge([h_out, s_out, v_out])
else:
hsv_out = cv2.merge([h_out, s_in, v_in])
target = cv2.cvtColor(hsv_out, cv2.COLOR_HSV2BGR)
return target.astype('uint8')
def hue_transfer(source=None, target=None):
""" Extracts hue from source img and applies mean and
std transfer from target, then returns image with converted y.
Args:
target: bgr numpy array of input image.
source: bgr numpy array of reference image.
Returns:
img_arr_out: transfered bgr numpy array of input image.
"""
target = read_image(target)
source = read_image(source)
hsv_in = cv2.cvtColor(target, cv2.COLOR_BGR2HSV)
_, s_in, v_in = cv2.split(hsv_in)
# h_in, s_in, v_in = cv2.split(hsv_in)
hsv_ref = cv2.cvtColor(source, cv2.COLOR_BGR2HSV)
hsv_out = stats_transfer(target=hsv_in, source=hsv_ref)
h_out, _, _ = cv2.split(hsv_out)
# h_out, s_out, v_out = cv2.split(hsv_out)
hsv_out = cv2.merge([h_out, s_in, v_in])
# hsv_out = cv2.merge([h_in, s_out, v_out])
img_arr_out = cv2.cvtColor(hsv_out, cv2.COLOR_HSV2BGR)
return img_arr_out.astype('uint8')
def luminance_transfer(source=None, target=None):
""" Extracts luminance from source img and applies mean and
std transfer from target, then returns image with converted y.
Args:
target: bgr numpy array of input image.
source: bgr numpy array of reference image.
Returns:
img_arr_out: transfered bgr numpy array of input image.
"""
target = read_image(target)
source = read_image(source)
# ycbcr_in = bgr2ycbcr(target, only_y=False)
ycbcr_in = cv2.cvtColor(target, cv2.COLOR_BGR2YCR_CB)
_, cb_in, cr_in = cv2.split(ycbcr_in)
# ycbcr_ref = bgr2ycbcr(source, only_y=False)
ycbcr_ref = cv2.cvtColor(source, cv2.COLOR_BGR2YCR_CB)
ycbcr_out = stats_transfer(target=ycbcr_in, source=ycbcr_ref)
y_out, _, _ = cv2.split(ycbcr_out)
ycbcr_out = cv2.merge([y_out, cb_in, cr_in])
# img_arr_out = ycbcr2rgb(ycbcr_out)
img_arr_out = cv2.cvtColor(ycbcr_out, cv2.COLOR_YCR_CB2BGR)
return img_arr_out.astype('uint8')
def ycbcr_transfer(source=None, target=None, keep_y=True, histo_match=False):
""" Convert img from rgb space to ycbcr space, apply mean and
std transfer, then convert back.
Args:
target: bgr numpy array of input image.
source: bgr numpy array of reference image.
keep_y: option to keep the original target y channel unchanged.
histo_match: option to do histogram matching before transfering the
image statistics (if combined with keep_y, only color channels
are modified).
Returns:
img_arr_out: transfered bgr numpy array of input image.
"""
target = read_image(target)
source = read_image(source)
# ycbcr_in = bgr2ycbcr(target, only_y=False)
ycbcr_in = cv2.cvtColor(target, cv2.COLOR_BGR2YCR_CB)
if keep_y:
y_in, _, _ = cv2.split(ycbcr_in)
# ycbcr_ref = bgr2ycbcr(source, only_y=False)
ycbcr_ref = cv2.cvtColor(source, cv2.COLOR_BGR2YCR_CB)
if histo_match:
ycbcr_ref = histogram_matching(reference=ycbcr_ref, image=ycbcr_in)
ycbcr_out = stats_transfer(target=ycbcr_in, source=ycbcr_ref)
if keep_y:
_, cb_out, cr_out = cv2.split(ycbcr_out)
ycbcr_out = cv2.merge([y_in, cb_out, cr_out])
# img_arr_out = ycbcr2rgb(ycbcr_out)
img_arr_out = cv2.cvtColor(ycbcr_out, cv2.COLOR_YCR_CB2BGR)
return img_arr_out.astype('uint8')
def lab_transfer(source=None, target=None):
""" Convert img from rgb space to lab space, apply mean and
std transfer, then convert back.
Args:
target: bgr numpy array of input image.
source: bgr numpy array of reference image.
Returns:
img_arr_out: transfered bgr numpy array of input image.
"""
target = read_image(target)
source = read_image(source)
lab_in = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)
lab_ref = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
lab_out = stats_transfer(target=lab_in, source=lab_ref)
img_arr_out = cv2.cvtColor(lab_out, cv2.COLOR_LAB2BGR)
return img_arr_out.astype('uint8')
def stats_transfer(source=None, target=None):
""" Adapt target's (mean, std) to source's (mean, std).
img_o = (img_i - mean(img_i)) / std(img_i) * std(img_r) + mean(img_r).
Args:
target: bgr numpy array of input image.
source: bgr numpy array of reference image.
Returns:
img_arr_out: transfered bgr numpy array of input image.
"""
target = read_image(target)
source = read_image(source)
mean_in, std_in = _imstats(target)
mean_ref, std_ref = _imstats(source)
img_arr_out = (target - mean_in) / std_in * std_ref + mean_ref
# clip
img_arr_out = _scale_array(img_arr_out)
return img_arr_out.astype('uint8')
def _match_cumulative_cdf(source, template):
"""
Return modified source array so that the cumulative density function of
its values matches the cumulative density function of the template.
"""
src_values, src_unique_indices, src_counts = np.unique(source.ravel(),
return_inverse=True,
return_counts=True)
tmpl_values, tmpl_counts = np.unique(template.ravel(), return_counts=True)
# calculate normalized quantiles for each array
src_quantiles = np.cumsum(src_counts) / source.size
tmpl_quantiles = np.cumsum(tmpl_counts) / template.size
# use linear interpolation of cdf to find new pixel values = interp(image, bins, cdf)
interp_a_values = np.interp(src_quantiles, tmpl_quantiles, tmpl_values)
# reshape to original image shape and return
return interp_a_values[src_unique_indices].reshape(source.shape)
def histogram_matching(reference=None, image=None, clip=None):
"""
Adjust an image so that its cumulative histogram matches that of another.
The adjustment is applied separately for each channel.
(https://en.wikipedia.org/wiki/Histogram_matching)
Parameters
----------
image : ndarray
Input image. Can be gray-scale or in color.
reference : ndarray
Image to match histogram of. Must have the same number of channels as
image.
Returns
-------
matched : ndarray
Transformed input image.
Raises
------
ValueError
Thrown when the number of channels in the input image and the reference
differ.
References
----------
.. [1] http://paulbourke.net/miscellaneous/equalisation/
.. [2] https://github.com/scikit-image/scikit-image/blob/master/skimage/exposure/histogram_matching.py
"""
image = read_image(image) # target
reference = read_image(reference) # ref
# expand dimensions if grayscale
image = expand_img(image)
reference = expand_img(reference)
if image.ndim != reference.ndim:
raise ValueError('Image and reference must have the same number '
'of channels.')
if image.shape[-1] != reference.shape[-1]:
raise ValueError('Number of channels in the input image and '
'reference image must match!')
matched = np.empty(image.shape, dtype=image.dtype)
for channel in range(image.shape[-1]):
matched_channel = _match_cumulative_cdf(image[..., channel],
reference[..., channel])
matched[..., channel] = matched_channel
if clip:
matched = _scale_array(matched, clip=clip)
return matched.astype("uint8")
def SOTransfer(source, target, steps=10, batch_size=5, reg_sigmaXY=16.0, reg_sigmaV=5.0, clip=False):
"""
Color Transform via Sliced Optimal Transfer, ported by @iperov
https://dcoeurjo.github.io/OTColorTransfer
source - any float range any channel image
target - any float range any channel image, same shape as src
steps - number of solver steps
batch_size - solver batch size
reg_sigmaXY - apply regularization and sigmaXY of filter, otherwise set to 0.0
reg_sigmaV - sigmaV of filter
return value
"""
source = read_image(source).astype("float32")
target = read_image(target).astype("float32")
if not np.issubdtype(source.dtype, np.floating):
raise ValueError("source value must be float")
if not np.issubdtype(target.dtype, np.floating):
raise ValueError("target value must be float")
# expand dimensions if grayscale
target = expand_img(image=target)
source = expand_img(image=source)
#expand source to target size if smaller
if source.shape != target.shape:
source = scale_img(source, target)
target_dtype = target.dtype
h,w,c = target.shape
new_target = target.copy()
for step in range (steps):
advect = np.zeros ((h*w,c), dtype=target_dtype)
for batch in range (batch_size):
dir = np.random.normal(size=c).astype(target_dtype)
dir /= np.linalg.norm(dir)
projsource = np.sum(new_target*dir, axis=-1).reshape((h*w))
projtarget = np.sum(source*dir, axis=-1).reshape((h*w))
idSource = np.argsort(projsource)
idTarget = np.argsort(projtarget)
a = projtarget[idTarget]-projsource[idSource]
for i_c in range(c):
advect[idSource,i_c] += a * dir[i_c]
new_target += advect.reshape((h,w,c)) / batch_size
new_target = _scale_array(new_target, clip=clip)
if reg_sigmaXY != 0.0:
target_diff = new_target-target
new_target = target + cv2.bilateralFilter (target_diff, 0, reg_sigmaV, reg_sigmaXY)
#new_target = _scale_array(new_target, clip=clip)
return new_target.astype("uint8")
class Regrain:
def __init__(self, smoothness=1):
'''
Regraining post-process to match color of resulting image and
gradient of the source image.
Automated colour grading using colour distribution transfer.
F. Pitie , A. Kokaram and R. Dahyot (2007) Computer Vision and Image
Understanding.
https://github.com/frcs/colour-transfer/blob/master/regrain.m
Parameters:
smoothness (default=1, smoothness>=0): sets the fidelity of the
original gradient field. e.g. smoothness = 0 implies resulting
image = graded image.
'''
self.nbits = [4, 16, 32, 64, 64, 64]
self.smoothness = smoothness
self.level = 0
# self.eps = 2.2204e-16
def regrain(self, source=None, target=None):
'''
Keep gradient of target and color of source.
https://github.com/frcs/colour-transfer/blob/master/regrain.m
Resulting image = regrain(I_original, I_graded, [self.smoothness])
'''
source = read_image(source) # ref
target = read_image(target) # target
#expand source to target size if smaller
if source.shape != target.shape:
source = scale_img(source, target)
target = target / 255.
source = source / 255.
img_arr_out = np.copy(target)
img_arr_out = self.regrain_rec(img_arr_out, target, source, self.nbits, self.level)
# clip
img_arr_out = _scale_array(img_arr_out, new_range=(0,1))
img_arr_out = (255. * img_arr_out).astype('uint8')
return img_arr_out
def regrain_rec(self, img_arr_out, target, source, nbits, level):
'''
Direct translation of matlab code.
https://github.com/frcs/colour-transfer/blob/master/regrain.m
'''
[h, w, _] = target.shape
h2 = (h + 1) // 2
w2 = (w + 1) // 2
if len(nbits) > 1 and h2 > 20 and w2 > 20:
#Note: could use matlab-like bilinear imresize instead, cv2 has no antialias
resize_arr_in = cv2.resize(target, (w2, h2), interpolation=cv2.INTER_LINEAR)
resize_arr_col = cv2.resize(source, (w2, h2), interpolation=cv2.INTER_LINEAR)
resize_arr_out = cv2.resize(img_arr_out, (w2, h2), interpolation=cv2.INTER_LINEAR)
resize_arr_out = self.regrain_rec(resize_arr_out, resize_arr_in, resize_arr_col, nbits[1:], level+1)
img_arr_out = cv2.resize(resize_arr_out, (w, h), interpolation=cv2.INTER_LINEAR)
img_arr_out = self.solve(img_arr_out, target, source, nbits[0], level)
return img_arr_out
def solve(self, img_arr_out, target, source, nbit, level, eps=1e-6):
'''
Direct translation of matlab code.
https://github.com/frcs/colour-transfer/blob/master/regrain.m
'''
[width, height, c] = target.shape
first_pad_0 = lambda arr : np.concatenate((arr[:1, :], arr[:-1, :]), axis=0)
first_pad_1 = lambda arr : np.concatenate((arr[:, :1], arr[:, :-1]), axis=1)
last_pad_0 = lambda arr : np.concatenate((arr[1:, :], arr[-1:, :]), axis=0)
last_pad_1 = lambda arr : np.concatenate((arr[:, 1:], arr[:, -1:]), axis=1)
delta_x= last_pad_1(target) - first_pad_1(target)
delta_y = last_pad_0(target) - first_pad_0(target)
delta = np.sqrt((delta_x**2 + delta_y**2).sum(axis=2, keepdims=True))
psi = 256*delta/5
psi[psi > 1] = 1
phi = 30. * 2**(-level) / (1 + 10*delta/self.smoothness)
phi1 = (last_pad_1(phi) + phi) / 2
phi2 = (last_pad_0(phi) + phi) / 2
phi3 = (first_pad_1(phi) + phi) / 2
phi4 = (first_pad_0(phi) + phi) / 2
rho = 1/5.
for i in range(nbit):
den = psi + phi1 + phi2 + phi3 + phi4
num = (np.tile(psi, [1, 1, c])*source
+ np.tile(phi1, [1, 1, c])*(last_pad_1(img_arr_out) - last_pad_1(target) + target)
+ np.tile(phi2, [1, 1, c])*(last_pad_0(img_arr_out) - last_pad_0(target) + target)
+ np.tile(phi3, [1, 1, c])*(first_pad_1(img_arr_out) - first_pad_1(target) + target)
+ np.tile(phi4, [1, 1, c])*(first_pad_0(img_arr_out) - first_pad_0(target) + target))
img_arr_out = num/np.tile(den + eps, [1, 1, c])*(1-rho) + rho*img_arr_out
return img_arr_out
class PDFTransfer:
def __init__(self, n=300, eps=1e-6, m=6, c=3):
""" Hyper parameters.
Attributes:
c: dim of rotation matrix, 3 for ordinary imgage.
n: discretization num of distribution of image's pixels.
m: num of random orthogonal rotation matrices.
eps: epsilon prevents from dividing by zero.
"""
self.n = n
self.eps = eps
if c == 3:
self.rotation_matrices = Rotations.optimal_rotations()
else:
self.rotation_matrices = Rotations.random_rotations(m, c=c)
def pdf_tranfer(self, source=None, target=None):
""" Apply probability density function transfer.
img_o = t(img_i) so that f_{t(img_i)}(r, g, b) = f_{img_r}(r, g, b),
where f_{img}(r, g, b) is the probability density function of img's rgb values.
O = t(I), where t: R^3-> R^3 is a continous mapping so that
f{t(I)}(r, g, b) = f{R}(r, g, b).
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.7694
https://github.com/pengbo-learn/python-color-transfer
Args:
target: bgr numpy array of input image.
source: bgr numpy array of reference image.
Returns:
img_arr_out: transfered bgr numpy array of input image.
"""
target = read_image(target) # target
source = read_image(source) # ref
# reshape (h, w, c) to (c, h*w)
[h, w, c] = target.shape
reshape_arr_in = target.reshape(-1, c).transpose()/255.
reshape_arr_ref = source.reshape(-1, c).transpose()/255.
# pdf transfer
reshape_arr_out = self.pdf_transfer_nd(arr_in=reshape_arr_in,
arr_ref=reshape_arr_ref)
# reshape (c, h*w) to (h, w, c)
reshape_arr_out = _scale_array(reshape_arr_out, new_range=(0,1))
reshape_arr_out = (255. * reshape_arr_out).astype('uint8')
img_arr_out = reshape_arr_out.transpose().reshape(h, w, c)
return img_arr_out
def pdf_transfer_nd(self, arr_in=None, arr_ref=None, step_size=1):
""" Apply n-dim probability density function transfer.
Args:
arr_in: shape=(n, x).
arr_ref: shape=(n, x).
step_size: arr = arr + step_size * delta_arr.
Returns:
arr_out: shape=(n, x).
"""
# n times of 1d-pdf-transfer
arr_out = np.array(arr_in)
for rotation_matrix in self.rotation_matrices:
rot_arr_in = np.matmul(rotation_matrix, arr_out)
rot_arr_ref = np.matmul(rotation_matrix, arr_ref)
rot_arr_out = np.zeros(rot_arr_in.shape)
for i in range(rot_arr_out.shape[0]):
rot_arr_out[i] = self._pdf_transfer_1d(rot_arr_in[i],
rot_arr_ref[i])
#func = lambda x, n : self._pdf_transfer_1d(x[:n], x[n:])
#rot_arr = np.concatenate((rot_arr_in, rot_arr_ref), axis=1)
#rot_arr_out = np.apply_along_axis(func, 1, rot_arr, rot_arr_in.shape[1])
rot_delta_arr = rot_arr_out - rot_arr_in
delta_arr = np.matmul(rotation_matrix.transpose(), rot_delta_arr) #np.linalg.solve(rotation_matrix, rot_delta_arr)
arr_out = step_size*delta_arr + arr_out
return arr_out
def _pdf_transfer_1d(self, arr_in=None, arr_ref=None):
""" Apply 1-dim probability density function transfer.
Args:
arr_in: 1d numpy input array.
arr_ref: 1d numpy reference array.
Returns:
arr_out: transfered input array.
"""
arr = np.concatenate((arr_in, arr_ref))
# discretization as histogram
min_v = arr.min() - self.eps
max_v = arr.max() + self.eps
xs = np.array([min_v + (max_v-min_v)*i/self.n for i in range(self.n+1)])
hist_in, _ = np.histogram(arr_in, xs)
hist_ref, _ = np.histogram(arr_ref, xs)
xs = xs[:-1]
# compute probability distribution
cum_in = np.cumsum(hist_in)
cum_ref = np.cumsum(hist_ref)
d_in = cum_in / cum_in[-1]
d_ref = cum_ref / cum_ref[-1]
# transfer
t_d_in = np.interp(d_in, d_ref, xs)
t_d_in[d_in<=d_ref[0]] = min_v
t_d_in[d_in>=d_ref[-1]] = max_v
arr_out = np.interp(arr_in, xs, t_d_in)
return arr_out
class Rotations:
''' generate orthogonal matrices for pdf transfer.'''
@classmethod
def random_rotations(cls, m, c=3):
''' Random rotation. '''
assert m > 0
rotation_matrices = [np.eye(c)]
rotation_matrices.extend([np.matmul(rotation_matrices[0], self.rvs(dim=c))
for _ in range(m-1)])
return rotation_matrices
@classmethod
def optimal_rotations(cls):
''' Optimal rotation.
Automated colour grading using colour distribution transfer.
F. Pitié , A. Kokaram and R. Dahyot (2007) Journal of Computer Vision and Image Understanding.
'''
rotation_matrices = [
[[1.000000, 0.000000, 0.000000], [0.000000, 1.000000, 0.000000], [0.000000, 0.000000, 1.000000]],
[[0.333333, 0.666667, 0.666667], [0.666667, 0.333333, -0.666667], [-0.666667, 0.666667, -0.333333]],
[[0.577350, 0.211297, 0.788682], [-0.577350, 0.788668, 0.211352], [0.577350, 0.577370, -0.577330]],
[[0.577350, 0.408273, 0.707092], [-0.577350, -0.408224, 0.707121], [0.577350, -0.816497, 0.000029]],
[[0.332572, 0.910758, 0.244778], [-0.910887, 0.242977, 0.333536], [-0.244295, 0.333890, -0.910405]],
[[0.243799, 0.910726, 0.333376], [0.910699, -0.333174, 0.244177], [-0.333450, -0.244075, 0.910625]],
#[[-0.109199, 0.810241, 0.575834], [0.645399, 0.498377, -0.578862], [0.756000, -0.308432, 0.577351]],
#[[0.759262, 0.649435, -0.041906], [0.143443, -0.104197, 0.984158], [0.634780, -0.753245, -0.172269]],
#[[0.862298, 0.503331, -0.055679], [-0.490221, 0.802113, -0.341026], [-0.126988, 0.321361, 0.938404]],
#[[0.982488, 0.149181, 0.111631], [0.186103, -0.756525, -0.626926], [-0.009074, 0.636722, -0.771040]],
#[[0.687077, -0.577557, -0.440855], [0.592440, 0.796586, -0.120272], [-0.420643, 0.178544, -0.889484]],
#[[0.463791, 0.822404, 0.329470], [0.030607, -0.386537, 0.921766], [-0.885416, 0.417422, 0.204444]],
]
rotation_matrices = [np.array(x) for x in rotation_matrices]
#for x in rotation_matrices:
# print(np.matmul(x.transpose(), x))
# import pdb
# pdb.set_trace()
return rotation_matrices
@classmethod
def rvs(self, dim=3):
''' generate orthogonal matrices with dimension=dim.
This is the rvs method pulled from the https://github.com/scipy/scipy/pull/5622/files,
with minimal change - just enough to run as a stand alone numpy function.
'''
random_state = np.random
H = np.eye(dim)
D = np.ones((dim,))
for n in range(1, dim):
x = random_state.normal(size=(dim-n+1,))
D[n-1] = np.sign(x[0])
x[0] -= D[n-1]*np.sqrt((x*x).sum())
# Householder transformation
Hx = (np.eye(dim-n+1) - 2.*np.outer(x, x)/(x*x).sum())
mat = np.eye(dim)
mat[n-1:, n-1:] = Hx
H = np.dot(H, mat)
# Fix the last sign such that the determinant is 1
D[-1] = (-1)**(1-(dim % 2))*D.prod()
# Equivalent to np.dot(np.diag(D), H) but faster, apparently
H = (D*H.T).T
return H
# Alternative CT calculation test to use with BlendingAlt. Still produces the lines in the images
def CT_alt(im=None, window_size=3):
"""
Take a gray scale image and for each pixel around the center of the window generate a bit value of length
window_size * 2 - 1. window_size of 3 produces bit length of 8, and 5 produces 24.
The image gets border of zero padded pixels half the window size.
Bits are set to one if pixel under consideration is greater than the center, otherwise zero.
:param image: numpy.ndarray(shape=(MxN), dtype=numpy.uint8)
:param window_size: int odd-valued
:return: numpy.ndarray(shape=(MxN), , dtype=numpy.uint8)
>>> image = np.array([ [50, 70, 80], [90, 100, 110], [60, 120, 150] ])
>>> np.binary_repr(transform(image)[0, 0])
'1011'
>>> image = np.array([ [60, 75, 85], [115, 110, 105], [70, 130, 170] ])
>>> np.binary_repr(transform(image)[0, 0])
'10011'
"""
half_window_size = window_size // 2
image = cv2.copyMakeBorder(im, top=half_window_size, left=half_window_size, right=half_window_size, bottom=half_window_size, borderType=cv2.BORDER_CONSTANT, value=0)
#Get the source image dims
# w, h = im.size
# h, w = im.shape
rows, cols = image.shape
#Initialize output array
# Census = np.zeros((h-2, w-2), dtype='uint8')
Census = np.zeros((rows - half_window_size * 2, cols - half_window_size * 2), dtype=np.uint8)
#centre pixels, which are offset by (1, 1)
# cp = im[1:h-1, 1:w-1]
center_pixels = image[half_window_size:rows - half_window_size, half_window_size:cols - half_window_size]
#offsets of non-central pixels
# offsets = [(u, v) for v in range(3) for u in range(3) if not u == 1 == v]
offsets = [(row, col) for row in range(half_window_size) for col in range(half_window_size) if not row == half_window_size + 1 == col]
#Do the pixel comparisons
# for u, v in offsets:
# Census = (Census << 1) | (im[v:v+h-2, u:u+w-2] >= cp)
for (row, col) in offsets:
Census = (Census << 1) | (image[row:row + rows - half_window_size * 2, col:col + cols - half_window_size * 2] >= center_pixels)
# print(Census.shape)
return Census
def BlendingAlt(LR, HR):
#TODO: Note: expects a single channel Y
#H, W, _ = LR.shape
H, W = LR.shape
#H1, W1, _ = HR.shape
H1, W1 = HR.shape
assert H1==H and W1==W
Census = CT_alt(LR)
blending0 = Census*HR + (1 - Census)*LR
return blending0
# Original CT calculation, to use with Blending1 and Blending2
def CT_descriptor(im):
#TODO: Note: expects a single channel Y
#H, W, _ = im.shape
H, W = im.shape
windowSize = 3
Census = np.zeros((H, W))
CT = np.zeros((H, W, windowSize, windowSize))
C = np.int((windowSize-1)/2)
for i in range(C,H-C):
for j in range(C, W-C):
cen = 0
for a in range(-C, C+1):
for b in range(-C, C+1):
if not (a==0 and b==0):
#TODO: Note: expects a single channel Y
if im[i+a, j+b] < im[i, j]:
cen += 1
CT[i, j, a+C,b+C] = 1
Census[i, j] = cen
Census = Census/8
# print(Census.shape, CT.shape)
return Census, CT
def Blending1(LR, HR):
#TODO: Note: expects a single channel Y
#H, W, _ = LR.shape
H, W = LR.shape
#H1, W1, _ = HR.shape
H1, W1 = HR.shape
assert H1==H and W1==W
Census, CT = CT_descriptor(LR)
blending1 = Census*HR + (1 - Census)*LR
# blending1 = cv2.addWeighted(HR, Census, LR, 1-Census, 0)
return blending1
def Blending2(LR, HR):
#TODO: Note: expects a single channel Y
#H, W, _ = LR.shape
H, W = LR.shape
#H1, W1, _ = HR.shape
H1, W1 = HR.shape
assert H1==H and W1==W
Census1, CT1 = CT_descriptor(LR)
Census2, CT2 = CT_descriptor(HR)
# print("1: ", Census1.min(), Census1.max(), CT1.min(), CT1.max())
# print("2: ", Census2.min(), Census2.max(), CT2.min(), CT2.max())
weight = np.zeros((H, W))