forked from LinjianMa/pairwise-perturbation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.h
145 lines (121 loc) · 3.14 KB
/
common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#ifndef __COMMON_ALS_H__
#define __COMMON_ALS_H__
#include <ctf.hpp>
using namespace CTF;
Matrix<> unroll_tensor_contraction(Tensor<>& T, int i);
void Construct_Dimension_Tree(map<string, string>& parent,
map<string, string>& sibling,
int start,
int end);
// common functions
void unit_tensor(Tensor<>& V,
int N,
int s,
World & dw);
void Gram_Schmidt(Vector<>& A,
Vector<>& B);
Vector<>** Gen_vector_condition(int * lens,
int dim,
int R,
double condition);
Tensor<> Gen_tensor_condition(int * lens,
int dim,
int R,
int base,
double condition,
World & dw);
/**
* \brief Identity tensor: I x I x I x ...
*/
Tensor<> identitiy_tensor(int N,
int s,
World & dw);
/**
* \brief laplacian tensor:
* 3d example : I x D x I + D x I x I + I x I x D
*/
void random_laplacian_tensor(Tensor<>& V,
int N,
int s,
bool sparse_V,
World & dw);
/**
* \brief laplacian tensor:
* 3d example : I x D x I + D x I x I + I x I x D
*/
void laplacian_tensor(Tensor<>& V,
int N,
int s,
bool sparse_V,
World & dw);
void Normalize(Matrix<>* W,
int N,
World & dw);
void SVD_solve(Matrix<>& M,
Matrix<>& W,
Matrix<>& S);
void SVD_solve_mod(Matrix<>& M,
Matrix<>& W,
Matrix<>& W_init,
Matrix<>& dW,
Matrix<>& S,
double ratio_step);
// Gauss-Seidel relaxation for A*Gamma = F
void Gauss_Seidel(Matrix<>& A,
Matrix<>& F,
Matrix<>& Gamma,
int maxits);
void fold_unfold(Tensor<>& X, Tensor<>& Y);
/**
* \brief To calculate the Khatri-Rao Product of W[i]
* H_T: output solution
* W[i]: input matrix
* index: sequence for W[i] to be used
* lens_H: lens of each dimension in H_T
*/
void KhatriRaoProduct(Tensor<> & H_T,
Matrix<> * W,
int * index,
int * lens_H,
World & dw);
/**
* \brief To calculate the Khatri-Rao Product of W[i] and contract with V
* M: output solution
* V: input tensor
* W[i]: input matrixs
* index: sequence for W[i] to be used
* lens_H: lens of each dimension in H_T
* M["dk"] = V["abcd"]*W1["ak"]*W2["bk"]*W3["ck"]
*/
void KhatriRao_contract(Matrix<> & M,
Tensor<> & V,
Matrix<> * W,
int * index,
int * lens_H,
World &dw) ;
/**
* \brief subproblem grad_W[i]
*/
void gradsubprob(Matrix<>& M,
Matrix<>& S,
Matrix<>& W,
Matrix<>& grad_W);
/**
* \brief initialize grad_W
*/
void gradient_CP(Tensor<> & V,
Matrix<> * W,
Matrix<> * grad_W,
World & dw);
void char_string_copy(char* a,
int start_a,
string& b,
int start_b,
int len);
Tensor<> Gen_collinearity(int * lens,
int dim,
int R,
double col_min,
double col_max,
World & dw);
#endif