-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
executable file
·313 lines (260 loc) · 11.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import torch as t
import torch.nn as nn
from torch.nn import init
import functools
# helper functions
def get_norm_layer(norm_type='instance'):
"""
Return a normalization layer, adopted from CycleGan
Parameters:
norm_type (str) -- the name of the normalization layer: batch | instance | none
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
batch norm 记录平均值和标准差
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
instance norm 不记录数据
"""
if norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d,
affine=False,
track_running_stats=False)
elif norm_type == 'none':
norm_layer = None
else:
raise NotImplementedError(
f'normalization layer [{norm_type}] not found')
return norm_layer
def init_weights(net, ini_type='normal', init_gain=0.02):
"""
Initialize network weights, adopted from CycleGan
:net (network): the network to be initialized
:ini_type (str): name of the initialization method: normal/xavier/kaiming/orthogonal
:init_gain (float): scaling for normal, xavier, and orthogonal
:return: None, apply initialization to the network
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if ini_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif ini_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif ini_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif ini_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError(
f'initialization method [{ini_type}] is not implemented')
print(f'initialize network with {ini_type}')
net.apply(init_func) # apply the initialization function <init_func>
class ResnetGenerator(nn.Module):
def __init__(self, opt):
# input_nc, output_nc, ngf=64, use_dropout=False, n_blocks=6, padding_type='reflect'):
""" Construct a Resnet-based generator, adopt from CycleGan """
input_nc = opt.input_nc
output_nc = opt.output_nc
n_blocks = opt.n_blocks
ngf = opt.ngf
use_dropout = opt.use_dropout
assert (n_blocks > 0) # resnet block 数目需要大于一
super(ResnetGenerator, self).__init__()
model = [nn.ReflectionPad2d(padding=3),
nn.Conv2d(in_channels=input_nc,
out_channels=ngf,
kernel_size=7,
padding=0,
bias=True),
nn.InstanceNorm2d(num_features=ngf),
nn.ReLU(inplace=True)]
# [1, 3, 262, 262] -> [1, 64, 256, 256]
""" add 2 downsampling layers """
n_downsampling = 2
for i in range(n_downsampling):
mult = 2 ** i
model += [nn.Conv2d(in_channels=ngf * mult,
out_channels=ngf * mult * 2,
kernel_size=3,
stride=2,
padding=1,
bias=True),
nn.InstanceNorm2d(num_features=ngf * mult * 2),
nn.ReLU(inplace=True)]
# [1, 64, 256, 256] -> [1, 64 * 2, 128, 128]
# [1, 64 * 2, 256, 256] -> [1, 64 * 4, 128, 128]
""" add n ResNet blocks """
mult = 2 ** n_downsampling
for i in range(n_blocks):
model += [ResnetBlock(dim=ngf * mult, use_dropout=use_dropout)]
# TODO: ask Ekta, why is there no dimension change between blocks here?
""" add 2 upsampling layers """
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += [nn.ConvTranspose2d(in_channels=ngf * mult,
out_channels=int(ngf * mult / 2),
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
bias=True),
nn.InstanceNorm2d(num_features=int(ngf * mult / 2)),
nn.ReLU(inplace=True)]
# 64 * 4 -> 64 * 2
# 128x128 -> 256x256
# 64 * 2 -> 64
# 256x256 -> 512x512
model += [nn.ReflectionPad2d(3)]
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
model += [nn.Tanh()]
# 64 -> 3
# 512x512 -> 512x512
# 将 list model 转化为 nn.Sequential
self.model = nn.Sequential(*model)
def forward(self, input):
""" standard forward """
return self.model(input)
class ResnetBlock(nn.Module):
def __init__(self, dim, use_dropout):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, use_dropout)
def build_conv_block(self, dim, use_dropout):
conv_block = [nn.ReflectionPad2d(padding=1)]
conv_block += [nn.Conv2d(in_channels=dim,
out_channels=dim,
kernel_size=3,
padding=0,
bias=True),
nn.InstanceNorm2d(num_features=dim),
nn.ReLU(inplace=True)]
if use_dropout:
conv_block += [nn.Dropout(p=0.5)]
conv_block += [nn.ReflectionPad2d(padding=1)]
conv_block += [nn.Conv2d(in_channels=dim,
out_channels=dim,
kernel_size=3,
padding=0,
bias=True),
nn.InstanceNorm2d(num_features=dim)]
return nn.Sequential(*conv_block)
def forward(self, input):
""" add skip connections """
out = input + self.conv_block(input)
return out
class NLayerDiscriminator(nn.Module):
""" defines a PatchGAN discriminator, adopt from CycleGAN """
def __init__(self, opt):
super(NLayerDiscriminator, self).__init__()
use_bias = True
input_nc = opt.input_nc
ndf = opt.ndf
n_layers = 3
kw = 4
padw = 1
sequence = [nn.Conv2d(in_channels=input_nc,
out_channels=ndf,
kernel_size=kw,
stride=2,
padding=padw),
nn.LeakyReLU(negative_slope=0.2,
inplace=True)]
# 3 -> 64
# 512x512 -> 256x256
nf_mult = 1
for n in range(1, n_layers):
# gradually increase the number of filters
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [nn.Conv2d(in_channels=ndf * nf_mult_prev,
out_channels=ndf * nf_mult,
kernel_size=kw,
stride=2,
padding=padw,
bias=True),
nn.InstanceNorm2d(num_features=ndf * nf_mult),
nn.LeakyReLU(0.2, True)]
# 64 -> 64 * 2
# 256x256 -> 128x128
# 64 * 2 -> 64 * 4
# 128x128 -> 64x64
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [nn.Conv2d(in_channels=ndf * nf_mult_prev,
out_channels=ndf * nf_mult,
kernel_size=kw,
stride=1,
padding=padw,
bias=True),
nn.InstanceNorm2d(num_features=ndf * nf_mult),
nn.LeakyReLU(negative_slope=0.2,
inplace=True)]
# 64 * 4 -> 64 * 8
# 64x64 -> 63x63
""" output 1 channel prediction map """
sequence += [nn.Conv2d(in_channels=ndf * nf_mult,
out_channels=1,
kernel_size=kw,
stride=1,
padding=padw)]
# 64 * 8 -> 1
# 63x63 -> 62x62
self.model = nn.Sequential(*sequence)
def forward(self, input):
""" standard forward """
return self.model(input)
class GANLoss(nn.Module):
"""Define different GAN objectives.
The GANLoss class abstracts away the need to create the target label tensor
that has the same size as the input.
"""
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
""" Initialize the GANLoss class.
Parameters:
gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
target_real_label (bool) - - label for a real image
target_fake_label (bool) - - label of a fake image
Note: Do not use sigmoid as the last layer of Discriminator.
LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
"""
super(GANLoss, self).__init__()
self.register_buffer('real_label', t.tensor(target_real_label))
self.register_buffer('fake_label', t.tensor(target_fake_label))
self.gan_mode = gan_mode
if gan_mode == 'lsgan':
self.loss = nn.MSELoss()
elif gan_mode == 'vanilla':
self.loss = nn.BCEWithLogitsLoss()
elif gan_mode in ['wgangp']:
self.loss = None
else:
raise NotImplementedError('gan mode %s not implemented' % gan_mode)
def get_target_tensor(self, prediction, target_is_real):
"""Create label tensors with the same size as the input.
Parameters:
prediction (tensor) - - tpyically the prediction from a discriminator
target_is_real (bool) - - if the ground truth label is for real images or fake images
Returns:
A label tensor filled with ground truth label, and with the size of the input
"""
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
# return target_tensor.expand_as(prediction)
return target_tensor.expand_as(prediction).to(t.device('cuda'))
def __call__(self, prediction, target_is_real):
"""Calculate loss given Discriminator's output and grount truth labels.
Parameters:
prediction (tensor) - - tpyically the prediction output from a discriminator
target_is_real (bool) - - if the ground truth label is for real images or fake images
Returns:
the calculated loss.
"""
if self.gan_mode in ['lsgan', 'vanilla']:
# prediction is 2D prediction map vector from Discriminator
target_tensor = self.get_target_tensor(prediction, target_is_real)
# loss = self.loss(prediction, target_tensor)
loss = self.loss(prediction, target_tensor)
elif self.gan_mode == 'wgangp':
if target_is_real:
loss = -prediction.mean()
else:
loss = prediction.mean()
return loss