-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathposes.py
229 lines (200 loc) · 7.95 KB
/
poses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch
import cv2
import numpy as np
import json
import matplotlib.pyplot as plt
from boxlist import BoxList
from utils import (
generate_shiftscalerotate_matrix,
get_single_bop_annotation,
load_bop_meshes,
draw_bounding_box,
draw_pose_axis,
remap_pose,
)
class PoseAnnot(object):
"""
This class represents a set of 6D pose objects within one image
"""
def __init__(self, bbox_3d, K, mask, class_ids, rotations, translations, width, height):
self.keypoints_3d = bbox_3d
self.K = K
self.mask = mask
self.class_ids = class_ids
self.rotations = rotations
self.translations = translations
self.width = width
self.height = height
def transform(self, M, target_K, target_width, target_height):
"""
M: the transform matrix
target_K: the target intrinsic matrix
"""
new_masks = cv2.warpAffine(self.mask, M[:2], (target_width, target_height), flags=cv2.INTER_NEAREST, borderValue=0)
# compute new RT under internal K
new_rotations = []
new_translations = []
for i in range(len(self.class_ids)):
cls_id = self.class_ids[i]
pt3d = np.array(self.keypoints_3d[i])
R = self.rotations[i]
T = self.translations[i]
newR, newT, diff_in_pix = remap_pose(self.K, R, T, pt3d, target_K, M)
new_rotations.append(newR)
new_translations.append(newT)
# print(diff_in_pix)
return PoseAnnot(
self.keypoints_3d, target_K, new_masks, self.class_ids,
new_rotations, new_translations, target_width, target_height)
def compute_keypoint_positions(self):
obj_cnt = len(self.class_ids)
kp_positions = []
for i in range(obj_cnt):
clsId = self.class_ids[i]
R = self.rotations[i]
T = self.translations[i]
p3d = np.array(self.keypoints_3d[clsId])
pts = np.matmul(self.K, np.matmul(R, p3d.transpose()) + T)
xs = pts[0] / (pts[2] + 1e-8)
ys = pts[1] / (pts[2] + 1e-8)
kp_positions.append(np.concatenate((xs.reshape(-1,1),ys.reshape(-1,1)), axis=1))
return np.stack(kp_positions)
def visualize(self, cvImg):
tmpPoses = self.to_numpy()
cvImg = cvImg.copy()
boxlist = tmpPoses.to_object_boxlist().bbox.tolist()
# boxlist = tmpPoses.to_visible_boxlist().bbox.tolist()
# tmpImg = cv2.normalize(tmpPoses.mask, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
# cv2.imshow("maskImg", tmpImg)
assert(len(boxlist) == len(tmpPoses.class_ids))
for i in range(len(tmpPoses.class_ids)):
# bbox = boxlist[i]
# cvImg = cv2.rectangle(cvImg, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (255, 255, 0), 2)
cls_id = int(tmpPoses.class_ids[i])
R = tmpPoses.rotations[i]
T = tmpPoses.translations[i]
pt3d = np.array(tmpPoses.keypoints_3d[cls_id])
# draw pose axis
cvImg = draw_bounding_box(cvImg, R, T, pt3d, tmpPoses.K, (0,255,0), 1)
# cvImg = draw_bounding_box(cvImg, R, T, pt3d, tmpPoses.K, (128,128,128), 1)
cvImg = draw_pose_axis(cvImg, R, T, pt3d, tmpPoses.K, 2)
return cvImg
def remove_invalids(self, min_area=10):
"""
check if segmentation masks have valid areas
"""
new_classids = []
new_rotations = []
new_translations = []
new_mask = torch.zeros_like(self.mask)
curr_idx = 1
valid_idx = []
for i in range(len(self.class_ids)):
tmpMask = (self.mask == i + 1)
area = tmpMask.sum()
if area < min_area:
continue
valid_idx.append(i)
new_classids.append(self.class_ids[i])
new_rotations.append(self.rotations[i])
new_translations.append(self.translations[i])
new_mask[tmpMask] = curr_idx
curr_idx += 1
if len(new_classids) > 0:
self.class_ids = torch.stack(new_classids)
self.rotations = torch.stack(new_rotations)
self.translations = torch.stack(new_translations)
else:
self.class_ids = torch.LongTensor([])
self.rotations = torch.FloatTensor([])
self.translations = torch.FloatTensor([])
self.mask = new_mask
return self
# Tensor-like methods
def to_numpy(self):
if isinstance(self.keypoints_3d, torch.Tensor):
poses = PoseAnnot(
self.keypoints_3d.numpy(),
self.K.numpy(),
self.mask.numpy(),
self.class_ids.numpy(),
self.rotations.numpy(),
self.translations.numpy(),
self.width, self.height
)
return poses
else:
return self
def to_tensor(self):
poses = PoseAnnot(
torch.FloatTensor(self.keypoints_3d),
torch.FloatTensor(self.K),
torch.FloatTensor(self.mask),
torch.LongTensor(self.class_ids),
torch.FloatTensor(self.rotations),
torch.FloatTensor(self.translations),
self.width, self.height
)
return poses
def to(self, device):
poses = PoseAnnot(
self.keypoints_3d.to(device),
self.K.to(device),
self.mask.to(device),
self.class_ids.to(device),
self.rotations.to(device),
self.translations.to(device),
self.width, self.height
)
return poses
def __len__(self):
return len(self.class_ids)
def to_object_boxlist(self):
# based on object 3D model, without considering occlusion
objCnt = len(self.class_ids)
bboxs = []
for i in range(objCnt):
if isinstance(self.mask, torch.Tensor):
positions = (self.mask == (i+1)).nonzero(as_tuple=False)
ys = positions[:, 0]
xs = positions[:, 1]
else:
ys, xs = np.where(self.mask == (i+1))
if len(xs) < 1:
bboxs.append([0,0,0,0])
continue
# based on the reprojection of 3D bounding box
clsId = self.class_ids[i]
kp3d = self.keypoints_3d[clsId]
R = self.rotations[i]
T = self.translations[i]
if isinstance(self.mask, torch.Tensor):
reps = torch.matmul(self.K, torch.matmul(R, kp3d.t()) + T)
else:
reps = np.matmul(self.K, np.matmul(R, kp3d.transpose()) + T)
xs = reps[0] / (reps[2] + 1e-8)
ys = reps[1] / (reps[2] + 1e-8)
bboxs.append([float(xs.min()), float(ys.min()), float(xs.max()), float(ys.max())])
if isinstance(self.mask, torch.Tensor):
return BoxList(bboxs, (self.width, self.height), mode="xyxy").to(self.mask.device)
else:
return BoxList(bboxs, (self.width, self.height), mode="xyxy")
def to_visible_boxlist(self):
# based on masks
objCnt = len(self.class_ids)
bboxs = []
for i in range(objCnt):
if isinstance(self.mask, torch.Tensor):
positions = (self.mask == (i+1)).nonzero(as_tuple=False)
ys = positions[:, 0]
xs = positions[:, 1]
else:
ys, xs = np.where(self.mask == (i+1))
if len(xs) < 1:
bboxs.append([0,0,0,0])
continue
bboxs.append([float(xs.min()), float(ys.min()), float(xs.max()), float(ys.max())])
if isinstance(self.mask, torch.Tensor):
return BoxList(bboxs, (self.width, self.height), mode="xyxy").to(self.mask.device)
else:
return BoxList(bboxs, (self.width, self.height), mode="xyxy")