-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdataset.py
executable file
·148 lines (118 loc) · 4.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import json
import cv2
import random
import numpy as np
import torch
from torch.utils.data import Dataset
from boxlist import BoxList
from poses import PoseAnnot
from utils import (
load_bop_meshes,
load_bbox_3d,
get_single_bop_annotation
)
class BOP_Dataset(Dataset):
def __init__(self, image_list_file, mesh_dir, bbox_json, transform, samples_count=0, training=True):
# file list and data should be in the same directory
dataDir = os.path.split(image_list_file)[0]
with open(image_list_file, 'r') as f:
self.img_files = f.readlines()
self.img_files = [dataDir + '/' + x.strip() for x in self.img_files]
#
rawSampleCount = len(self.img_files)
if training and samples_count > 0:
self.img_files = random.choices(self.img_files, k = samples_count)
if training:
random.shuffle(self.img_files)
print("Number of samples: %d / %d" % (len(self.img_files), rawSampleCount))
#
self.meshes, self.objID_2_clsID= load_bop_meshes(mesh_dir)
#
self.bbox_3d = load_bbox_3d(bbox_json)
self.transformer = transform
self.training = training
def __len__(self):
return len(self.img_files)
def __getitem__(self, index):
item = self.getitem1(index)
while item is None:
index = random.randint(0, len(self.img_files) - 1)
item = self.getitem1(index)
return item
def getitem1(self, index):
img_path = self.img_files[index]
# Load image
try:
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # BGR(A)
if img is None:
raise RuntimeError('load image error')
#
if img.dtype == np.uint16:
img = cv2.convertScaleAbs(img, alpha=(255.0/65535.0)).astype(np.uint8)
#
if len(img.shape) == 2:
# convert gray to 3 channels
img = np.repeat(img.reshape(img.shape[0], img.shape[1], 1), 3, axis=2)
# elif img.shape[2] == 3:
# # add an alpha channel
# img = np.concatenate((img, np.ones((img.shape[0], img.shape[1], 1), dtype=np.uint8)*255), axis=-1)
elif img.shape[2] == 4:
# having alpha
tmpBack = (img[:,:,3] == 0)
img[:,:,0:3][tmpBack] = 255 # white background
except:
print('image %s not found' % img_path)
return None
# Load labels (BOP format)
height, width, _ = img.shape
K, merged_mask, class_ids, rotations, translations = get_single_bop_annotation(img_path, self.objID_2_clsID)
# get (raw) image meta info
meta_info = {
'path': img_path,
'K': K,
'width': width,
'height': height,
'class_ids': class_ids,
'rotations': rotations,
'translations': translations
}
target = PoseAnnot(self.bbox_3d, K, merged_mask, class_ids, rotations, translations, width, height)
# transformation
img, target = self.transformer(img, target)
target = target.remove_invalids(min_area = 10)
if self.training and len(target) == 0:
# print("WARNING: skipped a sample without any targets")
return None
return img, target, meta_info
class ImageList:
def __init__(self, tensors, sizes):
self.tensors = tensors
self.sizes = sizes
def to(self, *args, **kwargs):
tensor = self.tensors.to(*args, **kwargs)
return ImageList(tensor, self.sizes)
def image_list(tensors, size_divisible=0):
max_size = tuple(max(s) for s in zip(*[img.shape for img in tensors]))
if size_divisible > 0:
stride = size_divisible
max_size = list(max_size)
if max_size[1] % stride != 0:
max_size[1] = (max_size[1] | (stride - 1)) + 1
if max_size[2] % stride != 0:
max_size[2] = (max_size[2] | (stride - 1)) + 1
max_size = tuple(max_size)
shape = (len(tensors),) + max_size
batch = tensors[0].new(*shape).zero_()
for img, pad_img in zip(tensors, batch):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
sizes = [img.shape[-2:] for img in tensors]
return ImageList(batch, sizes)
def collate_fn(size_divisible):
def collate_data(batch):
batch = list(zip(*batch))
imgs = image_list(batch[0], size_divisible)
targets = batch[1]
meta_infos = batch[2]
return imgs, targets, meta_infos
return collate_data