-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_UCLID_Net.py
327 lines (274 loc) · 12.9 KB
/
train_UCLID_Net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import argparse
import random
import string
import datetime
import os
import json
import torch
import torch.optim as optim
import torch.nn.functional as F
from torchvision.utils import save_image
from models import UCLID_Net
import dataloaders.UCLID_Net as dataset
from utils import AverageValueMeter, get_target_occupancy, save_pointcloud
from extensions import dist_chamfer
distChamfer = dist_chamfer.chamferDist()
# =============PARAMETERS======================================== #
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=28,
help='batch size for training')
parser.add_argument('--workers', type=int, default=6,
help='number of data loading workers')
parser.add_argument('--nepoch', type=int, default=150,
help='number of epochs to train for')
parser.add_argument('--model', type=str, default='',
help='optional reload model path')
parser.add_argument('--num_points', type=int, default=5000,
help='number of points for sampling GT shapes')
parser.add_argument('--train_split', type=str, default = 'data/splits/cars_train.json',
help='training split')
parser.add_argument('--test_split', type=str, default = 'data/splits/cars_test.json',
help='testing split')
parser.add_argument('--nb_cells', type=int, default=28,
help='grid size of the cuboid output')
parser.add_argument('--n_2D_featuremaps', type=int, default=292,
help='# of 2D feature maps at the bottom of the UNet-like architecture')
parser.add_argument('--output_dir', type=str, default="output/",
help='where to log outputs')
parser.add_argument('--experiment_name', type=str, default='',
help='Used for creating output directory and Wandb experiment')
parser.add_argument('--train_point_samples', type=int, default=10,
help='# of points samples per voxel for training')
parser.add_argument('--test_point_samples', type=int, default=10,
help='# of points samples per voxel for testing')
opt = parser.parse_args()
print(opt)
# ========================================================== #
# =============OUTPUTS and LOGS======================================== #
if opt.experiment_name == '':
# Assign random name
experiments_name = ''.join(random.choice(string.ascii_lowercase) for i in range(6))
else:
experiments_name = opt.experiment_name
# Give a unique experiment name
experiments_name += datetime.datetime.now().isoformat(timespec='seconds')
# Initialize wandb logs if available
try:
import wandb
wandb.init(project='UCLID_Net', name='UCLID_Net_' + experiments_name)
WANDB_LOGS = True
except:
print('wandb module not found, or uncorrectly initialized.')
print('Training will not be logged to wandb')
WANDB_LOGS = False
# Create output directory
output_folder = os.path.join(opt.output_dir, experiments_name)
print("saving logs in ", output_folder)
if not os.path.exists(output_folder):
os.makedirs(output_folder)
logfile = os.path.join(output_folder, 'log.txt')
# ========================================================== #
# ===================CREATE DATASET================================= #
# Create train/test dataloader
with open(opt.train_split, "r") as f:
train_split = json.load(f)
with open(opt.test_split, "r") as f:
test_split = json.load(f)
dataset_train = dataset.Image_DepthMaps_PointClouds(split=train_split,
subsample=opt.num_points,
is_train=True)
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=opt.batch_size,
shuffle=True, num_workers=int(opt.workers),
pin_memory=True)
# Small batch size, for the first training epoch
dataloader_small_bs = torch.utils.data.DataLoader(dataset_train, batch_size=2,
shuffle=True, num_workers=int(opt.workers),
pin_memory=True)
dataset_test = dataset.Image_DepthMaps_PointClouds(split=test_split,
subsample=opt.num_points,
is_train=False)
dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=opt.batch_size,
shuffle=False, num_workers=int(opt.workers),
pin_memory=True)
print(f'Training set has {len(dataset_train)} samples.')
print(f'Testing set has {len(dataset_test)} samples.')
len_dataset = len(dataset_train)
# TODO: switch depth map size based on a proper option
if 'inferred' in dataset.DEPTHMAP_PATH:
depth_map_size = 112
else:
depth_map_size = 224
# ========================================================== #
# ===================CREATE network================================= #
network = UCLID_Net.UCLID_Net(nb_cells=opt.nb_cells,
n_2D_featuremaps=opt.n_2D_featuremaps,
depth_map_size=depth_map_size)
network = network.cuda() # move network to GPU
# If needed, load existing model
if opt.model != '':
network.load_state_dict(torch.load(opt.model))
print('Previous net weights loaded')
# ========================================================== #
# ===================CREATE optimizer================================= #
lrate = 0.001 # learning rate
optimizer = optim.Adam(network.parameters(), lr=lrate)
# ========================================================== #
# =============DEFINE stuff for logs======================================== #
# meters to record stats on learning
total_train_loss = AverageValueMeter()
chd_train_loss = AverageValueMeter()
occ_train_loss = AverageValueMeter()
test_loss = AverageValueMeter()
best_train_loss = 10
with open(logfile, 'a') as f: # open logfile and append network's architecture
f.write(str(network) + '\n')
# ========================================================== #
# =============FIRST TRAINING EPOCH: occupancy only======================================== #
network.train()
for i, data in enumerate(dataloader_small_bs, 0):
optimizer.zero_grad()
points, img, depth_maps, _, camRt, _, _, _ = data
points = points.cuda()
img = img.cuda()
depth_maps = depth_maps.cuda()
camRt = camRt.cuda()
target_occupancy = get_target_occupancy(points, opt.nb_cells)
# FORWARD PASS: reconstruct points from images
occupancy, _, _ = network(img, camRt, depth_maps, opt.train_point_samples)
# occupancy : shape (batch, 1, nb_cells, nb_cells, nb_cells)
loss_occ = F.binary_cross_entropy(occupancy, target_occupancy)
loss_net = 100.0 * loss_occ
loss_net.backward()
optimizer.step() # gradient update
print('[PRETRAIN: %d/%d] train occupancy loss: %f ' % (
i, len_dataset / 2, loss_occ.item()))
# ========================================================== #
# =============FULL TRAINING LOOP======================================== #
for epoch in range(opt.nepoch):
# TRAIN MODE
total_train_loss.reset()
chd_train_loss.reset()
occ_train_loss.reset()
network.train()
# Manual learning rate schedule
if epoch == 100:
lrate = lrate / 10.
optimizer = optim.Adam(network.parameters(), lr=lrate)
for i, data in enumerate(dataloader_train, 0):
optimizer.zero_grad()
points, img, depth_maps, _, camRt, _, mesh_name, _ = data
points = points.cuda()
B_size = points.shape[0]
img = img.cuda()
depth_maps = depth_maps.cuda()
camRt = camRt.cuda()
target_occupancy = get_target_occupancy(points, opt.nb_cells)
# FORWARD PASS: reconstruct points from images
occupancy, pointsReconstructed, mask = network(img, camRt, depth_maps, opt.train_point_samples)
# occupancy : shape (batch, 1, nb_cells, nb_cells, nb_cells)
# pointsReconstructed : shape (batch, N, points per voxels, 3)
# with N the max. number of occupied voxels in the batch
# mask : shape (batch, N). Some points in pointsReconstructed correspond
# folded patches in empty voxels, and only exist so that a single tensor
# can be returned for the whole batch, with different number of occupied voxels.
# The mask information allows to discard unoccupied voxels.
# Map generated points back to original bounding box ([1,1]^3)
pointsReconstructed = (2.0 / opt.nb_cells) * pointsReconstructed - 1.0
# Compute masked Chamfer distance
mask_per_pts = mask.unsqueeze(-1).repeat(1,1,opt.train_point_samples)
mask_per_pts = mask_per_pts.reshape(B_size, -1)
points_flat = pointsReconstructed.reshape(B_size, -1, 3)
dist1, dist2 = distChamfer(points_flat.contiguous(), points) # loss function
# Now assemble loss masking out padded entries
mean_dist1 = 0
for k in range(B_size):
dist1_per_batch = dist1[k]
mask_per_batch = mask_per_pts[k, :]
mean_dist1 += torch.mean(dist1_per_batch[mask_per_batch]) / B_size
# Finally here is the final loss computation:
# both sides of Chamfer + BCE on occupancy grids
loss_ch = torch.mean(dist2) + mean_dist1
loss_occ = F.binary_cross_entropy(occupancy, target_occupancy)
loss_net = loss_ch + 100.0 * loss_occ
loss_net.backward()
optimizer.step() # gradient update
total_train_loss.update(loss_net.item())
chd_train_loss.update(loss_ch.item())
occ_train_loss.update(loss_occ.item())
# VISUALIZE
if i % 200 <= 0:
print("Storing to file...")
save_pointcloud(points[0].data.cpu(),
os.path.join(output_folder, f'train_GT_{epoch}_{i}.ply'))
save_pointcloud(points_flat[0][mask_per_pts[0]].data.cpu(),
os.path.join(output_folder, f'train_output_{epoch}_{i}.ply'))
save_image(img[0], os.path.join(output_folder, f'train_input_{epoch}_{i}.png'))
print('[%d: %d/%d] Train Chamfer Loss: %f, Train Occupancy Loss: %f ' % (
epoch, i, len_dataset / opt.batch_size, loss_ch.item(), loss_occ.item()))
# Testing
test_loss.reset()
network.eval()
with torch.no_grad():
for i, data in enumerate(dataloader_test, 0):
points, img, depth_maps, _, camRt, _, mesh_name, _ = data
points = points.cuda()
B_size = points.shape[0]
img = img.cuda()
depth_maps = depth_maps.cuda()
camRt = camRt.cuda()
target_occupancy = get_target_occupancy(points, opt.nb_cells)
# FORWARD PASS: reconstruct points from images
occupancy, pointsReconstructed, mask = network(img, camRt, depth_maps, opt.train_point_samples)
# Map generated points back to original bounding box ([1,1]^3)
pointsReconstructed = (2.0 / opt.nb_cells) * pointsReconstructed - 1.0
# Compute masked Chamfer distance
mask_per_pts = mask.unsqueeze(-1).repeat(1, 1, opt.train_point_samples)
mask_per_pts = mask_per_pts.reshape(B_size, -1)
points_flat = pointsReconstructed.reshape(B_size, -1, 3)
dist1, dist2 = distChamfer(points_flat.contiguous(), points) # loss function
# Now assemble loss masking out padded entries
mean_dist1 = 0
for k in range(B_size):
dist1_per_batch = dist1[k]
mask_per_batch = mask_per_pts[k, :]
mean_dist1 += torch.mean(dist1_per_batch[mask_per_batch]) / B_size
# both sides of Chamfer + BCE on occupancy grids
loss_ch = torch.mean(dist2) + mean_dist1
loss_occ = F.binary_cross_entropy(occupancy, target_occupancy)
test_loss.update(loss_ch.item())
# VISUALIZE
if i % 200 <= 0:
print("Storing to file...")
save_pointcloud(points[0].data.cpu(),
os.path.join(output_folder, f'test_GT_{epoch}_{i}.ply'))
save_pointcloud(points_flat[0][mask_per_pts[0]].data.cpu(),
os.path.join(output_folder, f'test_output_{epoch}_{i}.ply'))
save_image(img[0], os.path.join(output_folder, f'test_input_{epoch}_{i}.png'))
print('[%d: %d/%d] Test Chamfer Loss: %f, Test Occupancy Loss: %f ' % (
epoch, i, len(dataset_test) / opt.batch_size, loss_ch.item(), loss_occ.item()))
# Save best network
if best_train_loss > chd_train_loss.avg:
print('Best training CHD loss so far: saving net...')
torch.save(network.state_dict(), os.path.join(output_folder, 'best_network.pth'))
best_train_loss = chd_train_loss.avg
# Log metrics to wandb if available
if WANDB_LOGS:
wandb.log({'Training Loss total': total_train_loss.avg,
'Test Loss CHD': test_loss.avg,
'Best Train Loss CHD': best_train_loss,
'Train Loss CHD': chd_train_loss.avg,
'Training Loss OCC': occ_train_loss.avg})
# Dump stats in log file
log_table = {
'train_loss': total_train_loss.avg,
'test_loss': test_loss.avg,
'epoch': epoch,
'lr': lrate,
'besttrainchd': best_train_loss,
}
print(log_table)
with open(logfile, 'a') as f:
f.write('json_stats: ' + json.dumps(log_table) + '\n')
# Save last network
print('saving net...')
torch.save(network.state_dict(), os.path.join(output_folder, 'last_network.pth'))