-
Notifications
You must be signed in to change notification settings - Fork 6
/
train.py
323 lines (273 loc) · 15.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim
import torch.optim.lr_scheduler as lr_scheduler
import time
import os
import glob
import backbone
from data.datamgr import SimpleDataManager, SetDataManager
from methods.baselinetrain import BaselineTrain
from methods.baselinefinetune import BaselineFinetune
from methods.protonet import ProtoNet
from methods.matchingnet import MatchingNet
from methods.relationnet import RelationNet
from methods.maml import MAML
from io_utils import model_dict, parse_args, get_resume_file, get_best_file, get_assigned_file
from tensorboardX import SummaryWriter
import json
from model_resnet import *
def train(base_loader, val_loader, model, start_epoch, stop_epoch, params):
if params.optimization == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=params.lr)
elif params.optimization == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=params.lr)
elif params.optimization == 'Nesterov':
optimizer = torch.optim.SGD(model.parameters(), lr=params.lr, nesterov=True, momentum=0.9, weight_decay=params.wd)
else:
raise ValueError('Unknown optimization, please define by yourself')
max_acc = 0
writer = SummaryWriter(log_dir=params.checkpoint_dir)
for epoch in range(start_epoch,stop_epoch):
model.train()
model.train_loop(epoch, base_loader, optimizer, writer) #model are called by reference, no need to return
model.eval()
if not os.path.isdir(params.checkpoint_dir):
os.makedirs(params.checkpoint_dir)
if params.jigsaw:
acc, acc_jigsaw = model.test_loop( val_loader)
writer.add_scalar('val/acc', acc, epoch)
writer.add_scalar('val/acc_jigsaw', acc_jigsaw, epoch)
elif params.rotation:
acc, acc_rotation = model.test_loop( val_loader)
writer.add_scalar('val/acc', acc, epoch)
writer.add_scalar('val/acc_rotation', acc_rotation, epoch)
else:
acc = model.test_loop( val_loader)
writer.add_scalar('val/acc', acc, epoch)
if acc > max_acc : #for baseline and baseline++, we don't use validation here so we let acc = -1
print("best model! save...")
max_acc = acc
outfile = os.path.join(params.checkpoint_dir, 'best_model.tar')
torch.save({'epoch':epoch, 'state':model.state_dict()}, outfile)
if ((epoch+1) % params.save_freq==0) or (epoch==stop_epoch-1):
outfile = os.path.join(params.checkpoint_dir, '{:d}.tar'.format(epoch))
torch.save({'epoch':epoch, 'state':model.state_dict()}, outfile)
# return model
if __name__=='__main__':
np.random.seed(10)
params = parse_args('train')
isAircraft = (params.dataset == 'aircrafts')
base_file = os.path.join('filelists', params.dataset, params.base+'.json')
val_file = os.path.join('filelists', params.dataset, 'val.json')
image_size = params.image_size
if params.method in ['baseline', 'baseline++'] :
base_datamgr = SimpleDataManager(image_size, batch_size = params.bs, jigsaw=params.jigsaw, rotation=params.rotation, isAircraft=isAircraft)
base_loader = base_datamgr.get_data_loader( base_file , aug = params.train_aug )
val_datamgr = SimpleDataManager(image_size, batch_size = params.bs, jigsaw=params.jigsaw, rotation=params.rotation, isAircraft=isAircraft)
val_loader = val_datamgr.get_data_loader( val_file, aug = False)
if params.dataset == 'CUB':
params.num_classes = 200
elif params.dataset == 'cars':
params.num_classes = 196
elif params.dataset == 'aircrafts':
params.num_classes = 100
elif params.dataset == 'dogs':
params.num_classes = 120
elif params.dataset == 'flowers':
params.num_classes = 102
elif params.dataset == 'miniImagenet':
params.num_classes = 100
elif params.dataset == 'tieredImagenet':
params.num_classes = 608
if params.method == 'baseline':
model = BaselineTrain( model_dict[params.model], params.num_classes, \
jigsaw=params.jigsaw, lbda=params.lbda, rotation=params.rotation, tracking=params.tracking)
elif params.method == 'baseline++':
model = BaselineTrain( model_dict[params.model], params.num_classes, \
loss_type = 'dist', jigsaw=params.jigsaw, lbda=params.lbda, rotation=params.rotation, tracking=params.tracking)
elif params.method in ['protonet','matchingnet','relationnet', 'relationnet_softmax', 'maml', 'maml_approx']:
n_query = max(1, int(params.n_query * params.test_n_way/params.train_n_way)) #if test_n_way is smaller than train_n_way, reduce n_query to keep batch size small
train_few_shot_params = dict(n_way = params.train_n_way, n_support = params.n_shot, \
jigsaw=params.jigsaw, lbda=params.lbda, rotation=params.rotation)
base_datamgr = SetDataManager(image_size, n_query = n_query, **train_few_shot_params, isAircraft=isAircraft)
base_loader = base_datamgr.get_data_loader( base_file , aug = params.train_aug )
test_few_shot_params = dict(n_way = params.test_n_way, n_support = params.n_shot, \
jigsaw=params.jigsaw, lbda=params.lbda, rotation=params.rotation)
val_datamgr = SetDataManager(image_size, n_query = n_query, **test_few_shot_params, isAircraft=isAircraft)
val_loader = val_datamgr.get_data_loader( val_file, aug = False)
if params.method == 'protonet':
model = ProtoNet( model_dict[params.model], **train_few_shot_params, use_bn=(not params.no_bn), pretrain=params.pretrain)
elif params.method == 'matchingnet':
model = MatchingNet( model_dict[params.model], **train_few_shot_params )
elif params.method in ['relationnet', 'relationnet_softmax']:
feature_model = lambda: model_dict[params.model]( flatten = False )
loss_type = 'mse' if params.method == 'relationnet' else 'softmax'
model = RelationNet( feature_model, loss_type = loss_type , **train_few_shot_params )
elif params.method in ['maml' , 'maml_approx']:
backbone.ConvBlock.maml = True
backbone.SimpleBlock.maml = True
backbone.BottleneckBlock.maml = True
backbone.ResNet.maml = True
BasicBlock.maml = True
Bottleneck.maml = True
ResNet.maml = True
model = MAML( model_dict[params.model], approx = (params.method == 'maml_approx') , **train_few_shot_params )
else:
raise ValueError('Unknown method')
model = model.cuda()
params.checkpoint_dir = 'checkpoints/%s/%s_%s_%s' %(params.dataset, params.date, params.model, params.method)
if params.train_aug:
params.checkpoint_dir += '_aug'
if not params.method in ['baseline', 'baseline++']:
params.checkpoint_dir += '_%dway_%dshot_%dquery' %( params.train_n_way, params.n_shot, params.n_query)
if params.dataset_unlabel is not None:
params.checkpoint_dir += params.dataset_unlabel
params.checkpoint_dir += str(params.bs)
## Track bn stats
if params.tracking:
params.checkpoint_dir += '_tracking'
## Add jigsaw
if params.jigsaw:
params.checkpoint_dir += '_jigsaw_lbda%.2f'%(params.lbda)
params.checkpoint_dir += params.optimization
## Add rotation
if params.rotation:
params.checkpoint_dir += '_rotation_lbda%.2f'%(params.lbda)
params.checkpoint_dir += params.optimization
params.checkpoint_dir += '_lr%.4f'%(params.lr)
if params.finetune:
params.checkpoint_dir += '_finetune'
print('Checkpoint path:',params.checkpoint_dir)
if not os.path.isdir(params.checkpoint_dir):
os.makedirs(params.checkpoint_dir)
start_epoch = params.start_epoch
stop_epoch = params.stop_epoch
if params.method == 'maml' or params.method == 'maml_approx' :
stop_epoch = params.stop_epoch * model.n_task #maml use multiple tasks in one update
if params.resume:
resume_file = get_resume_file(params.checkpoint_dir)
if resume_file is not None:
tmp = torch.load(resume_file)
start_epoch = tmp['epoch']+1
model.load_state_dict(tmp['state'])
del tmp
elif params.warmup: #We also support warmup from pretrained baseline feature, but we never used in our paper
baseline_checkpoint_dir = 'checkpoints/%s/%s_%s' %(params.dataset, params.model, 'baseline')
if params.train_aug:
baseline_checkpoint_dir += '_aug'
warmup_resume_file = get_resume_file(baseline_checkpoint_dir)
tmp = torch.load(warmup_resume_file)
if tmp is not None:
state = tmp['state']
state_keys = list(state.keys())
for i, key in enumerate(state_keys):
if "feature." in key:
newkey = key.replace("feature.","") # an architecture model has attribute 'feature', load architecture feature to backbone by casting name from 'feature.trunk.xx' to 'trunk.xx'
state[newkey] = state.pop(key)
else:
state.pop(key)
model.feature.load_state_dict(state)
else:
raise ValueError('No warm_up file')
if params.loadfile != '':
print('Loading model from: ' + params.loadfile)
checkpoint = torch.load(params.loadfile)
## remove last layer for baseline
pretrained_dict = {k: v for k, v in checkpoint['state'].items() if 'classifier' not in k and 'loss_fn' not in k}
print('Load model from:',params.loadfile)
model.load_state_dict(pretrained_dict, strict=False)
json.dump(vars(params), open(params.checkpoint_dir+'/configs.json','w'))
train(base_loader, val_loader, model, start_epoch, stop_epoch, params)
##### from save_features.py (except maml)#####
split = 'novel'
if params.save_iter != -1:
split_str = split + "_" +str(params.save_iter)
else:
split_str = split
iter_num = 600
few_shot_params = dict(n_way = params.test_n_way , n_support = params.n_shot)
acc_all = []
if params.loadfile != '':
modelfile = params.loadfile
checkpoint_dir = params.loadfile
else:
checkpoint_dir = params.checkpoint_dir
if params.save_iter != -1:
modelfile = get_assigned_file(checkpoint_dir,params.save_iter)
elif params.method in ['baseline', 'baseline++'] :
modelfile = get_resume_file(checkpoint_dir)
else:
modelfile = get_best_file(checkpoint_dir)
if params.method in ['maml', 'maml_approx']:
if modelfile is not None:
tmp = torch.load(modelfile)
state = tmp['state']
state_keys = list(state.keys())
for i, key in enumerate(state_keys):
if "feature." in key:
newkey = key.replace("feature.","") # an architecture model has attribute 'feature', load architecture feature to backbone by casting name from 'feature.trunk.xx' to 'trunk.xx'
state[newkey] = state.pop(key)
else:
state.pop(key)
model.feature.load_state_dict(tmp['state'])
print('modelfile:',modelfile)
datamgr = SetDataManager(image_size, n_eposide = iter_num, n_query = 15 , **few_shot_params, isAircraft=isAircraft)
loadfile = os.path.join('filelists', params.dataset, 'novel.json')
novel_loader = datamgr.get_data_loader( loadfile, aug = False)
if params.adaptation:
model.task_update_num = 100 #We perform adaptation on MAML simply by updating more times.
model.eval()
acc_mean, acc_std = model.test_loop( novel_loader, return_std = True)
else:
if params.save_iter != -1:
outfile = os.path.join( checkpoint_dir.replace("checkpoints","features"), "novel_" + str(params.save_iter)+ ".hdf5")
else:
outfile = os.path.join( checkpoint_dir.replace("checkpoints","features"), "novel.hdf5")
datamgr = SimpleDataManager(image_size, batch_size = params.test_bs, isAircraft=isAircraft)
loadfile = os.path.join('filelists', params.dataset, 'novel.json')
data_loader = datamgr.get_data_loader(loadfile, aug = False)
tmp = torch.load(modelfile)
state = tmp['state']
state_keys = list(state.keys())
for i, key in enumerate(state_keys):
if "feature." in key:
newkey = key.replace("feature.","") # an architecture model has attribute 'feature', load architecture feature to backbone by casting name from 'feature.trunk.xx' to 'trunk.xx'
state[newkey] = state.pop(key)
else:
state.pop(key)
model.feature.load_state_dict(state)
model.eval()
model = model.cuda()
model.eval()
dirname = os.path.dirname(outfile)
if not os.path.isdir(dirname):
os.makedirs(dirname)
print('save outfile at:', outfile)
from save_features import save_features
save_features(model, data_loader, outfile)
### from test.py ###
from test import feature_evaluation
novel_file = os.path.join( checkpoint_dir.replace("checkpoints","features"), split_str +".hdf5") #defaut split = novel, but you can also test base or val classes
print('load novel file from:',novel_file)
import data.feature_loader as feat_loader
cl_data_file = feat_loader.init_loader(novel_file)
for i in range(iter_num):
acc = feature_evaluation(cl_data_file, model, n_query = 15, adaptation = params.adaptation, **few_shot_params)
acc_all.append(acc)
acc_all = np.asarray(acc_all)
acc_mean = np.mean(acc_all)
acc_std = np.std(acc_all)
print('%d Test Acc = %4.2f%% +- %4.2f%%' %(iter_num, acc_mean, 1.96* acc_std/np.sqrt(iter_num)))
with open(os.path.join( checkpoint_dir.replace("checkpoints","features"), split_str +"_test.txt") , 'a') as f:
timestamp = time.strftime("%Y%m%d-%H%M%S", time.localtime())
aug_str = '-aug' if params.train_aug else ''
aug_str += '-adapted' if params.adaptation else ''
if params.method in ['baseline', 'baseline++'] :
exp_setting = '%s-%s-%s-%s%s %sshot %sway_test' %(params.dataset, split_str, params.model, params.method, aug_str, params.n_shot, params.test_n_way )
else:
exp_setting = '%s-%s-%s-%s%s %sshot %sway_train %sway_test' %(params.dataset, split_str, params.model, params.method, aug_str , params.n_shot , params.train_n_way, params.test_n_way )
acc_str = '%d Test Acc = %4.2f%% +- %4.2f%%' %(iter_num, acc_mean, 1.96* acc_std/np.sqrt(iter_num))
f.write( 'Time: %s, Setting: %s, Acc: %s \n' %(timestamp,exp_setting,acc_str) )