forked from Haybu/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUserRegionLambdaExample.java
165 lines (152 loc) · 8.45 KB
/
UserRegionLambdaExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/**
* Copyright 2016 Confluent Inc.
* <p>
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
* <p>
* http://www.apache.org/licenses/LICENSE-2.0
* <p>
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package io.confluent.examples.streams;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KStreamBuilder;
import org.apache.kafka.streams.kstream.KTable;
import java.util.Properties;
/**
* Demonstrates group-by operations and aggregations on KTable. In this specific example we
* compute the user count per geo-region from a KTable that contains {@code <user, region>} information.
* <p>
* Note: This example uses lambda expressions and thus works with Java 8+ only.
* <p>
* <br>
* HOW TO RUN THIS EXAMPLE
* <p>
* 1) Start Zookeeper and Kafka. Please refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
* <p>
* 2) Create the input and output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --create --topic UserRegions \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic LargeRegions \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* }</pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be {@code bin/kafka-topics.sh ...}.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href='https://github.com/confluentinc/examples/tree/3.2.x/kafka-streams#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/streams-examples-3.2.0-standalone.jar io.confluent.examples.streams.UserRegionLambdaExample
* }</pre>
* 4) Write some input data to the source topics (e.g. via {@code kafka-console-producer}). The already
* running example application (step 3) will automatically process this input data and write the
* results to the output topic.
* <pre>
* {@code
* # Start the console producer, then input some example data records. The input data you enter
* # should be in the form of USER,REGION<ENTER> and, because this example is set to discard any
* # regions that have a user count of only 1, at least one region should have two users or more --
* # otherwise this example won't produce any output data (cf. step 5).
* #
* # alice,asia<ENTER>
* # bob,americas<ENTER>
* # chao,asia<ENTER>
* # dave,europe<ENTER>
* # alice,europe<ENTER> <<< Note: Alice moved from Asia to Europe
* # eve,americas<ENTER>
* # fang,asia<ENTER>
* # gandalf,europe<ENTER>
* #
* # Here, the part before the comma will become the message key, and the part after the comma will
* # become the message value.
* $ bin/kafka-console-producer --broker-list localhost:9092 --topic UserRegions \
* --property parse.key=true --property key.separator=,
* }</pre>
* 5) Inspect the resulting data in the output topics, e.g. via {@code kafka-console-consumer}.
* <pre>
* {@code
* $ bin/kafka-console-consumer --topic LargeRegions --from-beginning \
* --zookeeper localhost:2181 \
* --property print.key=true \
* --property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer
* }</pre>
* You should see output data similar to:
* <pre>
* {@code
* americas 2 # because Bob and Eve are currently in Americas
* asia 2 # because Chao and Fang are currently in Asia
* europe 3 # because Dave, Alice, and Gandalf are currently in Europe
* }</pre>
* 6) Once you're done with your experiments, you can stop this example via {@code Ctrl-C}. If needed,
* also stop the Kafka broker ({@code Ctrl-C}), and only then stop the ZooKeeper instance ({@code Ctrl-C}).
*/
public class UserRegionLambdaExample {
public static void main(final String[] args) throws Exception {
final Properties streamsConfiguration = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "user-region-lambda-example");
// Where to find Kafka broker(s).
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
// Specify default (de)serializers for record keys and for record values.
streamsConfiguration.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
// Records should be flushed every 10 seconds. This is less than the default
// in order to keep this example interactive.
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 10 * 1000);
final Serde<String> stringSerde = Serdes.String();
final Serde<Long> longSerde = Serdes.Long();
final KStreamBuilder builder = new KStreamBuilder();
final KTable<String, String> userRegions = builder.table("UserRegions", "UserRegionsStore");
// Aggregate the user counts of by region
final KTable<String, Long> regionCounts = userRegions
// Count by region;
// no need to specify explicit serdes because the resulting key and value types match our default serde settings
.groupBy((userId, region) -> KeyValue.pair(region, region))
.count("CountsByRegion")
// discard any regions with only 1 user
.filter((regionName, count) -> count >= 2);
// Note: The following operations would NOT be needed for the actual users-per-region
// computation, which would normally stop at the filter() above. We use the operations
// below only to "massage" the output data so it is easier to inspect on the console via
// kafka-console-consumer.
//
final KStream<String, Long> regionCountsForConsole = regionCounts
// get rid of windows (and the underlying KTable) by transforming the KTable to a KStream
.toStream()
// sanitize the output by removing null record values (again, we do this only so that the
// output is easier to read via kafka-console-consumer combined with LongDeserializer
// because LongDeserializer fails on null values, and even though we could configure
// kafka-console-consumer to skip messages on error the output still wouldn't look pretty)
.filter((regionName, count) -> count != null);
// write to the result topic, we need to override the value serializer to for type long
regionCountsForConsole.to(stringSerde, longSerde, "LargeRegions");
final KafkaStreams streams = new KafkaStreams(builder, streamsConfiguration);
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// http://docs.confluent.io/current/streams/developer-guide.html#application-reset-tool).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
}