forked from Haybu/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGlobalKTablesExample.java
208 lines (181 loc) · 10.3 KB
/
GlobalKTablesExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/**
* Copyright 2016 Confluent Inc.
* <p>
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
* <p>
* http://www.apache.org/licenses/LICENSE-2.0
* <p>
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package io.confluent.examples.streams;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.GlobalKTable;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KStreamBuilder;
import java.util.Collections;
import java.util.Map;
import java.util.Properties;
import io.confluent.examples.streams.avro.Customer;
import io.confluent.examples.streams.avro.EnrichedOrder;
import io.confluent.examples.streams.avro.Order;
import io.confluent.examples.streams.avro.Product;
import io.confluent.examples.streams.utils.SpecificAvroSerde;
import io.confluent.kafka.schemaregistry.client.CachedSchemaRegistryClient;
/**
* Demonstrates how to perform joins between KStreams and GlobalKTables, i.e. joins that
* don't require re-partitioning of the input streams.
* <p>
* In this example, we join a stream of orders that reads from a topic named
* "order" with a customers table that reads from a topic named "customer", and a products
* table that reads fro a topic "product". The join produces an EnrichedOrder object.
* <p>
* <br>
* HOW TO RUN THIS EXAMPLE
* <p>
* 1) Start Zookeeper, Kafka, and Confluent Schema Registry. Please refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
* <p>
* 2) Create the input/intermediate/output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --create --topic order \
* --zookeeper localhost:2181 --partitions 4 --replication-factor 1
* $ bin/kafka-topics --create --topic customer \
* --zookeeper localhost:2181 --partitions 3 --replication-factor 1
* $ bin/kafka-topics --create --topic product \
* --zookeeper localhost:2181 --partitions 2 --replication-factor 1
* $ bin/kafka-topics --create --topic enriched-order \
* --zookeeper localhost:2181 --partitions 4 --replication-factor 1
* }</pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be
* `bin/kafka-topics.sh ...`.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href='https://github.com/confluentinc/examples/tree/3.2.x/kafka-streams#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/streams-examples-3.2.0-standalone.jar io.confluent.examples.streams.GlobalKTablesExample
* }</pre>
* 4) Write some input data to the source topics (e.g. via {@link GlobalKTablesExampleDriver}). The
* already running example application (step 3) will automatically process this input data and write
* the results to the output topic.
* <pre>
* {@code
* # Here: Write input data using the example driver. The driver will exit once it has received
* # all EnrichedOrders
* $ java -cp target/streams-examples-3.2.0-standalone.jar io.confluent.examples.streams.GlobalKTablesExampleDriver
* }</pre>
* <p>
* 5) Once you're done with your experiments, you can stop this example via {@code Ctrl-C}. If needed,
* also stop the Confluent Schema Registry ({@code Ctrl-C}), then stop the Kafka broker ({@code Ctrl-C}), and
* only then stop the ZooKeeper instance ({@code Ctrl-C}).
*/
public class GlobalKTablesExample {
static final String ORDER_TOPIC = "order";
static final String CUSTOMER_TOPIC = "customer";
static final String PRODUCT_TOPIC = "product";
static final String CUSTOMER_STORE = "customer-store";
static final String PRODUCT_STORE = "product-store";
static final String ENRICHED_ORDER_TOPIC = "enriched-order";
public static void main(String[] args) {
final KafkaStreams
streams =
createStreams("localhost:9092", "http://localhost:8081", "/tmp/kafka-streams-global-tables");
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// http://docs.confluent.io/current/streams/developer-guide.html#application-reset-tool).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
// start processing
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(() -> streams.close()));
}
public static KafkaStreams createStreams(final String bootstrapServers,
final String schemaRegistryUrl,
final String stateDir) {
final Properties streamsConfiguration = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "global-tables-example");
// Where to find Kafka broker(s).
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, stateDir);
// Set to earliest so we don't miss any data that arrived in the topics before the process
// started
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
final CachedSchemaRegistryClient
schemaRegistry =
new CachedSchemaRegistryClient(schemaRegistryUrl, 100);
final Map<String, String>
serdeProps =
Collections.singletonMap("schema.registry.url", schemaRegistryUrl);
// create and configure the SpecificAvroSerdes required in this example
final SpecificAvroSerde<Order> orderSerde = new SpecificAvroSerde<>(schemaRegistry, serdeProps);
orderSerde.configure(serdeProps, false);
final SpecificAvroSerde<Customer> customerSerde = new SpecificAvroSerde<>(schemaRegistry, serdeProps);
customerSerde.configure(serdeProps, true);
final SpecificAvroSerde<Product> productSerde = new SpecificAvroSerde<>(schemaRegistry, serdeProps);
productSerde.configure(serdeProps, false);
final SpecificAvroSerde<EnrichedOrder> enrichedOrdersSerde = new SpecificAvroSerde<>(schemaRegistry, serdeProps);
enrichedOrdersSerde.configure(serdeProps, false);
final KStreamBuilder builder = new KStreamBuilder();
// Get the stream of orders
final KStream<Long, Order> ordersStream = builder.stream(Serdes.Long(), orderSerde, ORDER_TOPIC);
// Create a global table for customers. The data from this global table
// will be fully replicated on each instance of this application.
final GlobalKTable<Long, Customer>
customers =
builder.globalTable(Serdes.Long(), customerSerde, CUSTOMER_TOPIC, CUSTOMER_STORE);
// Create a global table for products. The data from this global table
// will be fully replicated on each instance of this application.
final GlobalKTable<Long, Product>
products =
builder.globalTable(Serdes.Long(), productSerde, PRODUCT_TOPIC, PRODUCT_STORE);
// Join the orders stream to the customer global table. As this is global table
// we can use a non-key based join with out needing to repartition the input stream
final KStream<Long, CustomerOrder> customerOrdersStream = ordersStream.join(customers,
(orderId, order) -> order.getCustomerId(),
(order, customer) -> new CustomerOrder(customer,
order));
// Join the enriched customer order stream with the product global table. As this is global table
// we can use a non-key based join without needing to repartition the input stream
final KStream<Long, EnrichedOrder> enrichedOrdersStream = customerOrdersStream.join(products,
(orderId, customerOrder) -> customerOrder
.productId(),
(customerOrder, product) -> new EnrichedOrder(
product,
customerOrder.customer,
customerOrder.order));
// write the enriched order to the enriched-order topic
enrichedOrdersStream.to(Serdes.Long(), enrichedOrdersSerde, ENRICHED_ORDER_TOPIC);
return new KafkaStreams(builder, new StreamsConfig(streamsConfiguration));
}
// Helper class for intermediate join between
// orders & customers
private static class CustomerOrder {
private final Customer customer;
private final Order order;
CustomerOrder(final Customer customer, final Order order) {
this.customer = customer;
this.order = order;
}
long productId() {
return order.getProductId();
}
}
}