-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainmmr.py
39 lines (31 loc) · 1.02 KB
/
trainmmr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
from sklearn import cross_validation
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn import svm
import csv
def main():
with open('mmrdata.csv', 'rb') as csvfile:
csvreader = csv.reader(csvfile, delimiter=',')
X_load = []
y_load = []
for row in csvreader:
X_load.append(row[:6])
y_load.append(row[-1])
X = np.array(X_load, dtype='float32')
y = np.array(y_load, dtype='float32')
data_train, data_test, target_train, target_test = cross_validation.train_test_split(X, y, test_size=0.1, random_state=0)
# Random ForestClassifier
clf = RandomForestClassifier(n_estimators=10, criterion='entropy')
clf = clf.fit(data_train, target_train)
print clf.score(data_test, target_test)
# Multinomial NB
clf = MultinomialNB()
clf = clf.fit(data_train, target_train)
print clf.score(data_test, target_test)
# SVC
clf = svm.SVC()
clf.fit(data_train, target_train)
print clf.score(data_test, target_test)
if __name__ == "__main__":
main()