-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatching2.py
440 lines (361 loc) · 17.3 KB
/
matching2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import torch
import torch.nn as nn
import random
import numpy as np
from qpthlocal.qp import QPFunction
from qpthlocal.qp import QPSolvers
from qpthlocal.qp import make_gurobi_model
import pickle
import argparse
import matplotlib.pyplot as plt
from tqdm import tqdm as tqdm
from collections import defaultdict
# matching matrix here corresponds to constraints only.
# so for kidneys we need to make the "each node in <= 1 cycle" constraint
# also we want to force cycle variables to be positive, as in edges below.
def make_matching_matrix(l_n, r_n):
# should take lhs and rhs sizes
lhs = list(range(l_n))
rhs = list(range(l_n, l_n + r_n))
# n_vars is 1 per possible edge?
n_vars = len(lhs)*len(rhs)
# n_constraints is 1 for each lhs, 1 for each rhs, 1 per edge?
n_constraints = len(lhs) + len(rhs) + n_vars
A = np.zeros((n_constraints, n_vars))
b = np.zeros((n_constraints))
curr_idx = 0
edge_idx = {}
# get an index per edge
for u in lhs:
for v in rhs:
edge_idx[(u,v)] = curr_idx
curr_idx += 1
# A has rows of 2n elements, followed by n^2 edges
# A has cols of n^2 edges (so A @ x where x is edges)
for u in lhs:
for v in rhs:
# for u, flip on coefficient for only its outgoing edges
A[u, edge_idx[(u,v)]] = 1
# for v, flip on coefficient for only its incoming edges
A[v, edge_idx[(u,v)]] = 1
# for the edge itself, flip on a single -1 at its point only (- point must be <= 0 i.e. point must be positive)
A[len(lhs)+len(rhs)+edge_idx[(u,v)], edge_idx[(u,v)]] = -1
# each element can have only 1 edge turned on in x
for u in lhs:
b[u] = 1
for u in rhs:
b[u] = 1
return A, b
def ind_counts_to_longs(arrival_counts):
# optimize later
results = []
for i in range(arrival_counts.shape[0]):
for j in range(arrival_counts[i]):
results.append(i)
return torch.LongTensor(results)
class History:
def __init__(self, lhs, rhs):
self.lhs = lhs
self.rhs = rhs
class CurrentElems:
def __init__(self, lhs, rhs):
self.lhs = lhs
self.rhs = rhs
def both_sides_history(type_arrival_rates, type_departure_probs, max_t):
return History(generate_full_history(type_arrival_rates, type_departure_probs, max_t),
generate_full_history(type_arrival_rates, type_departure_probs, max_t))
def generate_full_history(type_arrival_rates, type_departure_probs, max_t):
# an element is a list of (type, start_time, end_time)
# too bad we don't have mutable namedtuples here, and it's probably not
# worth creating a tiny class
all_elems = []
curr_elems = []
for t in range(max_t):
# departures
next_currelems = []
for i in range(len(curr_elems)):
v = curr_elems[i]
departing = np.random.rand() <= type_departure_probs[v[0]]
if departing:
v[2] = t
else:
next_currelems.append(v)
curr_elems = next_currelems
arrival_types = ind_counts_to_longs(np.random.poisson(lam=type_arrival_rates))
arrivals = [[x, t, -1] for x in arrival_types]
all_elems.extend(arrivals)
curr_elems.extend(arrivals)
for v in curr_elems:
v[2] = max_t
for v in all_elems:
assert(v[1] >= 0)
assert(v[2] >= 0)
return all_elems
def history_to_arrival_dict(full_history):
result = defaultdict(list)
for v in full_history:
result[v[1]].append(v)
return result
def arrivals_only(current_elems, l_t_to_arrivals, r_t_to_arrivals, curr_t):
return CurrentElems(current_elems.lhs + l_t_to_arrivals[curr_t], current_elems.rhs + r_t_to_arrivals[curr_t])
def true_match_loss(resulting_match, e_weights, match_thresh=0.6):
maxinds = torch.max(resulting_match, 0).indices
total_loss = 0.0
for i in range(e_weights.shape[1]):
if resulting_match[maxinds[i],i].item() >= match_thresh:
total_loss += e_weights[maxinds[i], i].item()
return total_loss
def step_simulation(current_elems, match_edges, e_weights, l_t_to_arrivals, r_t_to_arrivals, curr_t, match_thresh=0.8):
def get_matched_indices(match_edges, e_weights):
lhs_matched_inds = []
rhs_matched_inds = []
total_true_loss = 0.0
for i in range(match_edges.shape[0]):
max_val, max_ind = torch.max(match_edges[i], 0)
if max_val > match_thresh:
lhs_matched_inds.append(i)
rhs_matched_inds.append(max_ind.item())
total_true_loss += e_weights[i, max_ind].item()
return lhs_matched_inds, rhs_matched_inds, total_true_loss
lhs_matched_inds, rhs_matched_inds, total_true_loss = get_matched_indices(match_edges, e_weights)
# get locations of maxima
# remove from current_elems if the maxima are <= match_threshold.
pool_after_match = CurrentElems([],[])
for i in range(len(current_elems.lhs)):
if i not in lhs_matched_inds:
pool_after_match.lhs.append(current_elems.lhs[i])
for j in range(len(current_elems.rhs)):
if j not in rhs_matched_inds:
pool_after_match.rhs.append(current_elems.rhs[j])
remaining_elements = CurrentElems([], [])
for v in pool_after_match.lhs:
if v[2] > curr_t:
remaining_elements.lhs.append(v)
for v in pool_after_match.rhs:
if v[2] > curr_t:
remaining_elements.rhs.append(v)
# now get new elements (poisson?)
after_arrivals_lhs = remaining_elements.lhs + l_t_to_arrivals[curr_t]
after_arrivals_rhs = remaining_elements.rhs + r_t_to_arrivals[curr_t]
return CurrentElems(after_arrivals_lhs, after_arrivals_rhs), total_true_loss
def weight_matrix(lhs_current_elems, rhs_current_elems, weights_by_type):
# optimize later
weights_result = torch.zeros(lhs_current_elems.shape[0], rhs_current_elems.shape[0])
for i in range(lhs_current_elems.shape[0]):
for j in range(rhs_current_elems.shape[0]):
weights_result[i,j] = weights_by_type[lhs_current_elems[i],rhs_current_elems[j]]
return weights_result
def type_weight_matrix(lhs_current_elems, rhs_current_elems, weights_by_type):
# optimize later
weights_result = torch.zeros(lhs_current_elems.shape[0], rhs_current_elems.shape[0])
for i in range(lhs_current_elems.shape[0]):
for j in range(rhs_current_elems.shape[0]):
weights_result[i, j] = weights_by_type[lhs_current_elems[i]] + weights_by_type[rhs_current_elems[j]]
return weights_result
def compute_matching(current_pool_list, curr_type_weights, e_weights_by_type, gamma=0.000001):
# current_pool_list should have lhs and rhs, get them both as tensors
lhs_current_elems = torch.tensor([x[0] for x in current_pool_list.lhs])
rhs_current_elems = torch.tensor([x[0] for x in current_pool_list.rhs])
l_n = lhs_current_elems.shape[0]
r_n = rhs_current_elems.shape[0]
A, b = make_matching_matrix(l_n, r_n)
A = torch.from_numpy(A).float()
b = torch.from_numpy(b).float()
# should take lhs and rhs
e_weights = weight_matrix(lhs_current_elems, rhs_current_elems, e_weights_by_type).view(l_n, r_n)
jitter_e_weights = e_weights + 1e-4*torch.rand(l_n,r_n)
#e_weights = torch.rand(n,n)
model_params_quad = make_gurobi_model(A.detach().numpy(), b.detach().numpy(), None, None, gamma*np.eye(A.shape[1]))
func = QPFunction(verbose=False, solver=QPSolvers.GUROBI, model_params=model_params_quad)
Q_mat = gamma*torch.eye(A.shape[1])
curr_elem_weights = type_weight_matrix(lhs_current_elems, rhs_current_elems, curr_type_weights).view(l_n, r_n)
modified_edge_weights = jitter_e_weights - 0.5*(curr_elem_weights)
# may need some negative signs
resulting_match = func(Q_mat, -modified_edge_weights.view(-1), A, b, torch.Tensor(), torch.Tensor()).view(l_n, r_n)
return resulting_match, e_weights
## start of toy problem
def toy_e_weights_type():
mat = 0.1*torch.ones(5,5)
mat[0,1] = 3.0
mat[1,0] = 3.0
mat[0,0] = -100.0
mat[0,2:5] = -100.0
mat[2:5,0] = -100.0
return mat
toy_arrival_rates = torch.Tensor([0.2,1.0,1.0,1.0,1.0])
toy_departure_probs = torch.Tensor([0.9,0.05,0.1,0.1,0.1])
def compute_discounted_returns(losses, gamma=1.0):
# inspired originally by facebook's reinforce example
returns = []
R = 0.0
for r in losses[::-1]:
R = r + gamma * R
returns.insert(0, R)
return returns
def train_func(list_of_histories, n_rounds=50, n_epochs=20):
e_weights_type = toy_e_weights_type()
type_weights = torch.full((5,), 0.0, requires_grad=True)
optimizer = torch.optim.Adam([type_weights], lr=2e-3, weight_decay=1e-1)
total_losses = []
for e in tqdm(range(n_epochs)):
full_history = list_of_histories[e]
l_t_to_arrivals = history_to_arrival_dict(full_history.lhs)
r_t_to_arrivals = history_to_arrival_dict(full_history.rhs)
optimizer.zero_grad()
losses = []
curr_pool = CurrentElems([], [])
for r in range(n_rounds):
if len(curr_pool.lhs) <= 0 or len(curr_pool.rhs) <= 0:
curr_pool = arrivals_only(curr_pool, l_t_to_arrivals, r_t_to_arrivals, r)
continue
resulting_match, e_weights = compute_matching(curr_pool, type_weights, e_weights_type)
l = 1.0*torch.sum(e_weights * resulting_match)
losses.append(l)
curr_pool, true_loss = step_simulation(curr_pool, resulting_match, e_weights, l_t_to_arrivals, r_t_to_arrivals, r)
total_loss = torch.sum(torch.stack(compute_discounted_returns(losses)))
total_losses.append(total_loss.item())
total_loss.backward()
optimizer.step()
return type_weights, total_losses
def opt_score(history, max_t, e_weights_type):
import gurobipy as gp
import numpy as np
n_nodes = len(history)
model = gp.Model()
model.params.OutputFlag = 0
x = {}
for i in range(n_nodes):
for j in range(n_nodes):
for t in range(max_t):
x[i,j,t] = model.addVar(
vtype=gp.GRB.BINARY,
name=f'x_{i}_{j}_{t}',
)
model.update()
# constraint: each node matched once
match_once_constraints = []
for i in range(n_nodes):
match_once_constraints.append(model.addConstr(gp.quicksum(x[i,j,t] for j in range(n_nodes) for t in range(max_t)) <= 1))
# constraint: for each node, zero before it arrives and after it departs
arrive_depart_constraints = []
for i, node_info in enumerate(history):
t_arrive = node_info[1]
t_depart = node_info[2]
#for j in range(n_nodes):
#for t in range(0, t_arrive):
#model.addConstr(x[i,j,t] == 0)
#for t in range(t_depart, max_t): # or is it t_depart + 1???? this is important!
#model.addConstr(x[i,j,t] == 0)
arrive_depart_constraints.append(model.addConstr(gp.quicksum(x[i,j,t] for j in range(n_nodes) for t in range(0, t_arrive)) == 0))
arrive_depart_constraints.append(model.addConstr(gp.quicksum(x[i,j,t] for j in range(n_nodes) for t in range(t_depart, max_t)) == 0))
# we don't need an additional binaryness constraint because of variable type
# create objective while computing weights for each edge
obj = gp.LinExpr()
varwise_edge_weights = {}
for i, node_info_i in enumerate(history):
for j, node_info_j in enumerate(history):
random_jitter = random.random() * 1e-4
i_type = node_info_i[0]
j_type = node_info_j[0]
varwise_edge_weights[i,j] = e_weights_type[i_type, j_type].item()
edge_weight = -e_weights_type[i_type, j_type] + random_jitter
for t in range(max_t):
obj += x[i,j,t] * edge_weight.item()
model.setObjective(obj, gp.GRB.MINIMIZE)
model.optimize()
# enumerate nonzero variables and sum with varwise edge weights
total_positive_obj = 0.0
for i in range(n_nodes):
for j in range(n_nodes):
for t in range(max_t):
val = x[i,j,t].x
if val > 0.0:
total_positive_obj += varwise_edge_weights[i,j]
return total_positive_obj
def eval_func(list_of_histories, trained_weights, n_rounds = 50, n_epochs=100):
e_weights_type = toy_e_weights_type()
type_weights = trained_weights.detach()
all_losses = []
for e in tqdm(range(n_epochs)):
full_history = list_of_histories[e]
l_t_to_arrivals = history_to_arrival_dict(full_history.lhs)
r_t_to_arrivals = history_to_arrival_dict(full_history.rhs)
losses = []
curr_pool = CurrentElems([], [])
for r in range(n_rounds):
if len(curr_pool.lhs) <= 0 or len(curr_pool.rhs) <= 0:
curr_pool = arrivals_only(curr_pool, l_t_to_arrivals, r_t_to_arrivals, r)
losses.append(0.0)
continue
resulting_match, e_weights = compute_matching(curr_pool, type_weights, e_weights_type)
#losses.append(1.0*torch.sum(resulting_match * e_weights).item())
#old_loss = 1.0*torch.sum(resulting_match * e_weights).item()
#new_loss = 1.0*true_match_loss(resulting_match, e_weights)
#if abs(new_loss - old_loss) > 0.1:
#print(f'old - new: {old_loss - new_loss}')
#print(resulting_match)
#losses.append(1.0*true_match_loss(resulting_match, e_weights))
curr_pool, true_loss = step_simulation(curr_pool, resulting_match, e_weights, l_t_to_arrivals, r_t_to_arrivals, r)
losses.append(true_loss)
if len(losses) == 0:
losses.append(0.0)
all_losses.append(losses)
return all_losses
if __name__ == '__xxx__':
hist = History(generate_full_history(toy_arrival_rates, toy_departure_probs, 50), generate_full_history(toy_arrival_rates, toy_departure_probs, 50))
l_dict = history_to_arrival_dict(hist.lhs)
r_dict = history_to_arrival_dict(hist.rhs)
currpool = CurrentElems([[torch.tensor(1),0,5], [torch.tensor(2),0,5], [torch.tensor(2),0,5]], [[torch.tensor(1), 0,5], [torch.tensor(1),0,5]])
edge_weights = toy_e_weights_type()
type_weights = torch.full((5,), 0.0, requires_grad=False)
resulting_match, e_weights = compute_matching(currpool, type_weights, edge_weights)
print(resulting_match)
print(hist)
print(step_simulation(currpool, resulting_match, e_weights, l_dict, r_dict, 1).lhs)
if __name__ == '__main__':
results_list = []
train_epochs = 50
test_epochs = 100
n_experiments = 3
n_rounds=50
edge_weights = toy_e_weights_type()
for i in range(n_experiments):
print(i)
print('generating histories for training')
list_of_histories = [both_sides_history(toy_arrival_rates, toy_departure_probs, n_rounds) for e in tqdm(range(train_epochs))]
result_weights, learning_loss = train_func(list_of_histories, n_epochs=train_epochs)
print(result_weights)
print('generating histories for testing')
test_histories = [both_sides_history(toy_arrival_rates, toy_departure_probs, n_rounds) for e in tqdm(range(test_epochs))]
loss_list = eval_func(test_histories, result_weights, n_epochs=test_epochs)
learned_loss = np.mean([np.sum(l) for l in loss_list])
learned_std = np.std([np.sum(l) for l in loss_list])
print('loss of learned weights:', learned_loss)
print('std of learned weights:', learned_std)
const_loss_list = eval_func(test_histories, torch.full((5,), 0.0, requires_grad=False), n_epochs=test_epochs)
const_loss = np.mean([np.sum(l) for l in const_loss_list])
const_std = np.std([np.sum(l) for l in const_loss_list])
print('loss of initial constant weights:', const_loss)
print('std of initial constant weights:', const_std)
#print('computing OPT scores')
#optimal_loss_list = [opt_score(h, n_rounds, edge_weights) for h in tqdm(test_histories)]
#learned_regret = [(optimal - l) for (l, optimal) in zip([np.sum(l) for l in loss_list], optimal_loss_list)]
learned_regret = [0.0]
learned_regret_mean = np.mean(learned_regret)
learned_regret_std = np.std(learned_regret)
#const_regret = [(optimal - l) for (l, optimal) in zip([np.sum(l) for l in const_loss_list], optimal_loss_list)]
const_regret= [0.0]
const_regret_mean = np.mean(const_regret)
const_regret_std = np.std(const_regret)
results_list.append( (learned_loss, learned_std, const_loss, const_std, learned_regret_mean, learned_regret_std, const_regret_mean, const_regret_std) )
for i in range(n_experiments):
print('experiment', i)
losses = results_list[i]
learned_ci = 1.96 * losses[1] / np.sqrt(test_epochs)
learned_r_ci = 1.96 * losses[5] / np.sqrt(test_epochs)
const_ci = 1.96 * losses[3] / np.sqrt(test_epochs)
const_r_ci = 1.96 * losses[7] / np.sqrt(test_epochs)
print(f"learned weights mean: {losses[0]} +/- {learned_ci}")
print(f"constant weights mean: {losses[2]} +/- {const_ci}")
print(f'learned mean regret: {losses[4]} +/- {learned_r_ci}')
print(f'constant weights mean regret: {losses[6]} +/- {const_r_ci}')