forked from zshi0616/python-deepgate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebug.py
31 lines (26 loc) · 1.06 KB
/
debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import deepgate
import torch
import time
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('[INFO] Create and load pretrained DeepGate')
print('[INFO] Device: ', device)
model = deepgate.Model() # Create DeepGate
model.load_pretrained() # Load pretrained model
model = model.to(device)
bench_path = './tmp/test.bench'
print('[INFO] Parse Bench: ', bench_path)
parser = deepgate.BenchParser() # Create BenchParser
graph = parser.read_bench(bench_path) # Parse Bench into Graph
graph = graph.to(device)
print('[INFO] Get embeddings ...')
start_time = time.time()
hs, hf = model(graph) # Model inference
end_time = time.time()
# hs: structural embeddings, hf: functional embeddings
# hs/hf: [N, D]. N: number of gates, D: embedding dimension (default: 128)
print(hs.shape, hf.shape)
print('Time: ', end_time - start_time)