-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdevice_utilities.h
251 lines (234 loc) · 8.35 KB
/
device_utilities.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/**
*
* OHIO STATE UNIVERSITY SOFTWARE DISTRIBUTION LICENSE
*
* Parallel CCD++ on GPU (the “Software”) Copyright (c) 2017, The Ohio State
* University. All rights reserved.
*
* The Software is available for download and use subject to the terms and
* conditions of this License. Access or use of the Software constitutes acceptance
* and agreement to the terms and conditions of this License. Redistribution and
* use of the Software in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the capitalized paragraph below.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the capitalized paragraph below in the documentation
* and/or other materials provided with the distribution.
*
* 3. The names of Ohio State University, or its faculty, staff or students may not
* be used to endorse or promote products derived from the Software without
* specific prior written permission.
*
* This software was produced with support from the National Science Foundation
* (NSF) through Award 1629548. Nothing in this work should be construed as
* reflecting the official policy or position of the Defense Department, the United
* States government, Ohio State University.
*
* THIS SOFTWARE HAS BEEN APPROVED FOR PUBLIC RELEASE, UNLIMITED DISTRIBUTION. THE
* SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS, IMPLIED OR STATUTORY
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF ACCURACY, COMPLETENESS,
* NONINFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. ACCESS OR USE OF THE SOFTWARE IS ENTIRELY AT THE USER’S RISK. IN
* NO EVENT SHALL OHIO STATE UNIVERSITY OR ITS FACULTY, STAFF OR STUDENTS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE SOFTWARE
* USER SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS OHIO STATE UNIVERSITY AND ITS
* FACULTY, STAFF AND STUDENTS FROM ANY AND ALL CLAIMS, ACTIONS, DAMAGES, LOSSES,
* LIABILITIES, COSTS AND EXPENSES, INCLUDING ATTORNEYS’ FEES AND COURT COSTS,
* DIRECTLY OR INDIRECTLY ARISING OUT OF OR IN CONNECTION WITH ACCESS OR USE OF THE
* SOFTWARE.
*
*/
/**
*
* Author:
* Israt ([email protected])
*
* Contacts:
* Israt ([email protected])
* Aravind Sukumaran-Rajam ([email protected])
* P. (Saday) Sadayappan ([email protected])
*
*/
#include "util.h"
const int THREADLOAD = 2;
int NUM_THRDS = 10;
void cuda_timerStart(cudaEvent_t start, cudaStream_t streamT) {
cudaEventRecord(start, streamT);
}
float cuda_timerEnd(cudaEvent_t start, cudaEvent_t stop, cudaStream_t streamT) {
float mili = 0;
cudaDeviceSynchronize();
cudaEventRecord(stop, streamT);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&mili, start, stop);
return mili;
}
void copy_R(SparseMatrix &R, DTYPE *copy_R) //R to R copy
{
auto val_ptr = R.get_csr_val();
#pragma omp parallel for
for (int c = 0; c < R.cols_; ++c) {
for (int idx = R.get_csc_col_ptr()[c]; idx < R.get_csc_col_ptr()[c + 1];
++idx)
copy_R[idx] = val_ptr[idx];
}
}
void copy_R1(DTYPE *copy_R, SparseMatrix &R) {
auto val_ptr = R.get_csr_val();
#pragma omp parallel for
for (int c = 0; c < R.cols_; ++c) {
for (int idx = R.get_csc_col_ptr()[c]; idx < R.get_csc_col_ptr()[c + 1];
++idx)
val_ptr[idx] = copy_R[idx];
}
}
void make_tile(SparseMatrix &R, MatInt &tiled_bin, const int TS) {
#pragma omp parallel for
for (int c = 0; c < R.cols_; ++c) {
long idx = R.get_csc_col_ptr()[c];
tiled_bin[0][c] = idx;
for (int tile = TS; tile < (R.rows_ + TS - 1); tile += TS) {
int tile_no = tile / TS; // - 1;
while (R.get_csc_row_indx()[idx] < tile
&& idx < R.get_csc_col_ptr()[c + 1]) {
idx++;
}
tiled_bin[tile_no][c] = idx;
}
}
}
void make_tile_odd(SparseMatrix &R, MatInt &tiled_bin, const int TS) {
#pragma omp parallel for
for (int c = 0; c < R.cols_; ++c) {
long idx = R.get_csc_col_ptr()[c];
tiled_bin[0][c] = idx;
for (int tile = TS + (TS / 2); tile < (R.rows_ + (TS + (TS / 2)) - 1);
tile += TS) {
int tile_no = tile / TS; // - 1;
while (R.get_csc_row_indx()[idx] < tile
&& idx < R.get_csc_col_ptr()[c + 1]) {
idx++;
}
tiled_bin[tile_no][c] = idx;
}
}
}
void tiled_binning(SparseMatrix &R, int *host_rowGroupPtr, int *LB, int *UB,
int *count, MatInt &tiled_bin, const int tile_no) {
for (int i = 0; i < NUM_THRDS; i++) {
count[i] = 0;
UB[i] = (1 << i) * THREADLOAD;
LB[i] = UB[i] >> 1;
}
LB[0] = 0;
UB[NUM_THRDS - 1] = R.max_col_nnz_ + 1;
// // // // //***********binned
// omp_set_num_threads(NUM_THRDS); // create as many CPU threads as there are # of bins
// #pragma omp parallel
// {
// unsigned int cpu_thread_id = omp_get_thread_num();
// int i = cpu_thread_id; count[i] = 0;
// for (int col = 0; col < R.cols; col++){
// //for (int col = tile_no_c*5*tileSize_H; col < ((tile_no_c+1)*5*tileSize_H) && col < R.cols ; col++){
// int NNZ = tiled_bin[tile_no+1][col] - tiled_bin[tile_no][col]; // R.col_ptr[col + 1] - R.col_ptr[col];
// if (NNZ >= LB[i] && NNZ < UB[i]){
// host_rowGroupPtr[R.cols * i + count[i]++] = col;
// }
// }
// }
//*********non-binned
int i = 6;
count[i] = 0;
for (int col = 0; col < R.cols_; col++) {
host_rowGroupPtr[R.cols_ * i + count[i]++] = col;
}
//*********non-binned
// int i = 6;
// count[i] = 0;
// for (int col = 0; col < R.cols; col++){
// int NNZ = R.col_ptr[col+1] - R.col_ptr[col];
// host_rowGroupPtr[R.cols * i + count[i]++] = col;
// printf("%d %d\n",col, NNZ );
// }
// printf("done for R\n");
}
void binning(SparseMatrix &R, int *host_rowGroupPtr, int *LB, int *UB,
int *count) {
for (int i = 0; i < NUM_THRDS; i++) {
count[i] = 0;
UB[i] = (1 << i) * THREADLOAD + 1;
LB[i] = UB[i] >> 1;
}
LB[0] = 0;
UB[NUM_THRDS - 1] = R.max_col_nnz_ + 1;
omp_set_num_threads(NUM_THRDS); // create as many CPU threads as there are # of bins
#pragma omp parallel
{
unsigned int cpu_thread_id = omp_get_thread_num();
int i = cpu_thread_id;
for (int col = 0; col < R.cols_; col++) {
int NNZ = R.get_csc_col_ptr()[col + 1] - R.get_csc_col_ptr()[col];
if (NNZ > LB[i] && NNZ < UB[i]) {
host_rowGroupPtr[R.cols_ * i + count[i]++] = col; ////changed
}
}
}
}
__global__ void weighted_H_all(int const* __restrict__ R_colPtr,
DTYPE * __restrict__ H, DTYPE * __restrict__ temp_H, int m, int k) {
int c = blockIdx.x * blockDim.x + threadIdx.x;
if (c < m) {
int nnz = R_colPtr[c + 1] - R_colPtr[c];
if (nnz != 0) {
for (int t = 0; t < k; ++t)
H[c * k + t] = temp_H[c * k + t] / nnz;
}
}
}
__global__ void weighted_H(int const* __restrict__ R_colPtr,
int const* __restrict__ R_rowLim, DTYPE * __restrict__ H,
DTYPE * __restrict__ temp_H, int m, int k) {
int c = blockIdx.x * blockDim.x + threadIdx.x;
if (c < m) {
int nnz = R_rowLim[c] - R_colPtr[c]; ////////////-R_colPtr[c];
if (nnz != 0) {
for (int t = 0; t < k; ++t)
H[c * k + t] = temp_H[c * k + t] / nnz;
}
}
}
__global__ void assignment(int const* __restrict__ R_colPtr,
DTYPE * __restrict__ v, DTYPE * __restrict__ g, DTYPE *__restrict__ h,
DTYPE lambda, int m) {
int c = blockIdx.x * blockDim.x + threadIdx.x;
if (c < m) {
DTYPE gc = g[c], hc = h[c];
if (hc == 0)
v[c] = 0; //
else
v[c] = gc / hc;
}
}
__global__ void GPU_rmse(int const* __restrict__ test_row,
int const * __restrict__ test_col, DTYPE const * __restrict__ test_val,
DTYPE * __restrict__ pred_v, DTYPE * __restrict__ rmse,
DTYPE const * __restrict__ W, DTYPE const * __restrict__ H, int m,
int k, int rows, int cols) {
int c = blockIdx.x * blockDim.x + threadIdx.x;
if (c < m) {
for (int t = 0; t < k; t++) {
int i = test_row[c] + 1;
int j = test_col[c] + 1;
pred_v[c] += W[t * rows + (i - 1)] * H[t * cols + (j - 1)]; //W[i-1][t] * H[j-1][t];
}
rmse[c] = (pred_v[c] - test_val[c]) * (pred_v[c] - test_val[c]);
}
}