-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIMDIS2018_Climatologies.html
442 lines (358 loc) · 14.3 KB
/
IMDIS2018_Climatologies.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Spatial data interpolation</title>
<meta name="description" content="Spatial data interpolation">
<meta name="author" content="Charles">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.4.1/css/all.css" integrity="sha384-5sAR7xN1Nv6T6+dT2mhtzEpVJvfS3NScPQTrOxhwjIuvcA67KV2R5Jz6kr4abQsz" crossorigin="anonymous">
<link rel="stylesheet" href="css/reveal.css">
<link rel="stylesheet" href="https://unpkg.com/[email protected]/dist/leaflet.css"
integrity="sha512-Rksm5RenBEKSKFjgI3a41vrjkw4EVPlJ3+OiI65vTjIdo9brlAacEuKOiQ5OFh7cOI1bkDwLqdLw3Zg0cRJAAQ=="
crossorigin=""/>
<link rel="stylesheet" href="css/theme/sharlo.css" id="theme">
<link rel="stylesheet" href="css/pres.css">
<link rel="stylesheet" href="css/academicons.css">
<link rel="stylesheet" href="https://cdn.knightlab.com/libs/juxtapose/latest/css/juxtapose.css">
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? 'css/print/pdf.css' : 'css/print/paper.css';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
<!--[if lt IE 9]>
<script src="lib/js/html5shiv.js"></script>
<![endif]-->
</head>
<body>
<div class="reveal">
<div class="slides">
<section>
<section>
<h2>Generating ocean climatologies from in situ observations</h2>
<p>
<i class="fab fa-github"></i> gher-ulg<br>
<i class="fab fa-twitter"></i> @GHER_ULiege <br>
<i class="ai ai-orcid"></i> 0000-0002-0265-1021
</p>
<p><img src="images/logo_gher.png" height="100px"/><img src="images/logo_uliege.jpeg" height="100px"/> <img src="images/logo_seadatacloud.png" height="100px"/> <img src="images/logo_imdis.png" height="100px"/></p>
<p>Alexander Barth, Charles Troupin, Sylvain Watelet,<br> Aida Alvera-Azcárate and Jean-Marie Beckers</p>
</section>
<section class="center">
<h2>
<p>Collect once,</p>
<p class="fragment fade-up">Use many times</p>
<p class="fragment fade-up">And create products with DIVA</p>
</h2>
</section>
<section>
<h1> Conclusions </h1>
<ol>
<li> `DIVA` is a software tool written in Fortran </li>
<li> `DIVAnd` is a software tool written in Julia </li>
<li> Both are designed for the spatial interpolation of data </li>
</p>
</section>
</section>
<section>
<section class="center">
<h1>Methodology:<br> spatial interpolation</h1>
</section>
<section data-state="diva-map">
<h2>Gridding problem</h2>
<div style="text-align:left" id="diva-map" class="map"></div>
</section>
<section data-markdown>
### Constraints
1. **Closer** observations have a **stronger** influence
2. Different **confidence** in some measurements
3. **Physical** barriers and currents
4. Deal with up to **millions** of points
5. Many sources of **errors** on observations
6. Need an associated **error field**
![Approximation](images/approximation.jpg)
</section>
<section>
<h2>DIVA</h2>
Data-Interpolating Variational Analysis<br>
<a href="https://github.com/gher-ulg/DIVA">https://github.com/gher-ulg/DIVA</a><br>
<img src="https://zenodo.org/badge/80114691.svg"/> <br>
<img src="images/logo_diva.png"/> <br>
</section>
<section>
<h2>DIVAnd</h2>
<it>n</it>-dimensional generalisation of DIVA<br>
<a href="https://github.com/gher-ulg/DIVAnd.jl">https://github.com/gher-ulg/DIVAnd.jl</a><br>
<img src="https://zenodo.org/badge/79277337.svg"/> <br>
<img src="images/DIVAnd_github.jpg" width="80%"/> <br>
</section>
<section>
<h2>DIVAnd</h2>
<a href="https://www.geosci-model-dev.net/7/225/2014/">https://www.geosci-model-dev.net/7/225/2014/</a><br>
<img src="images/divand_paper.png"/> <br>
</section>
<section>
<h2>How to use it?</h2>
Jupyter notebooks as a guideline for the climatologies<br>
<img src="images/divand_notebooks.jpg"/> <br>
<a href="https://github.com/gher-ulg/Diva-Workshops">https://github.com/gher-ulg/Diva-Workshops</a><br>
</section>
<section style="text-align: left;"</section>
<h2>Fortran - MATLAB - Julia...</h2>
<img src="images/logo_julia.png" height="75px"/><br>
<p s>
Creation: 2012<br>
1.0.0 released: Aug 9, 2018<br>
Simplicity of Python + speed of C or Fortran<br>
<br>
<a href="http://julialang.org/">http://julialang.org/</a><br>
<a href="https://github.com/JuliaLang/julia">https://github.com/JuliaLang/julia</a>
</p>
</section>
<section >
<h2>Who is Julia?</h2>
<p class="fragment">
Julia Child (1912-2004)<br>
<img src="images/JuliaChild2.jpg" height="400px"/><br>
<h6 class="fragment">By Lynn Gilbert - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=51678880
</h6>
</p>
</section>
<section>
<h3> Why did we chose Julia? </h3>
<img src="images/harder_better.jpg" height="500px"/><br>
<h5>Source: http://daftpunk.wikia.com, No copyright infringement is intended</h5>
</section>
<section>
<h2>Better...</h2>
<br>
<p style="text-align:left">
Multiple dispatch<br>
Math-friendly syntax<br>
Unicode support: π, η, ∫ϵα
</p>
<pre><code class="julia">
julia> 🐟 = 1.
julia> 🐢 = 2.
julia> N = 🐟 + 🐢
3.0
</code></pre>
</section>
<section>
<h2>Faster</h2>
<p style="text-align:left">
Just-in-time (JIT) compiled<br>
Parallelism
</p>
<pre><code class="julia">
function fib(n::Int)
f=Vector{Int}(undef, n+1)
f[1]=f[2]=1;
for i=3:n+1
f[i]=f[i-1]+f[i-2]
end
return f
end
ff = @time fib(400000000);
1.158971 seconds (18.52 k allocations: 2.981 GiB, 0.84% gc time)
</code></pre>
</section>
<section>
<h2>Stronger</h2>
<p style="text-align:left">
<b>Metaprogramming:</b><br>
Julia programs can read, analyse, generate other Julia programs<br>
<br>
"Easy" interfacing: R, Python, ...
</p>
<pre><code class="julia">
@pyimport numpy.random as nr
nr.rand(3,4)
</code></pre>
</section>
<section>
<h2>Harder</h2>
<p style="text-align:left">
Learning a new and evolving language<br>
Transition from 0.6 to 1.0<br>
</p>
<img src="images/julia_release.jpg" height="400px"/><br>
</section>
</section>
<section>
<section class="center">
<h1>DIVAnd<br> in the VRE</h1>
</section>
<section class="center">
<h2>In short...</h2>
<p style="text-align:left"><br>
1. Ingest data from webODV (netCDF)<br>
2. Set the analysis parameters<br>
3. Apply DIVAnd interpolation<br>
4. Export the results in a new netCDF<br>
5. Visualise using Deltares toolbox<br>
</p>
</section>
<section class="center">
<img src="images/restAPI3.jpg" height="350px"/><br>
</section>
<section class="center">
<h2>Implementation</h2>
<p style="text-align:left"><br>
1. Julia using HTTP and JSON modules<br>
2. Deployment as a Docker container<br>
</p>
<img src="images/DIVAnd-REST.jpg" height="350px"/><br>
</section>
<section>
<video autoplay="true" loop="true" muted="true" width="640">
<source data-src="images/DIVAnd-REST-VRE-GUI.mp4" type="video/mp4"/>
</video>
</section>
</section>
<section>
<section class="center">
<h1>Applications</h1>
</section>
<section>
<h2>SeaDataCloud climatologies</h2>
<img src="images/snd_clim.jpg" height="450px"/><br>
<a href="https://www.seadatanet.org/Products/Climatologies">https://www.seadatanet.org/Products/Climatologies</a>
</section>
<section>
<h2>EMODnet Chemistry gridded fields</h2>
<img src="images/EMODnetChemi_prod.jpg" height="450px"/><br>
<a href="http://www.emodnet-chemistry.eu/products">http://www.emodnet-chemistry.eu/products</a>
</section>
<section>
<h2>EMODnet Biology products</h2>
<img src="images/EMODnetBio_prod.png" height="450px"/><br>
<a href="http://www.emodnet-biology.eu/data-products">http://www.emodnet-biology.eu/data-products</a>
</section>
</section>
<section>
<section class="center">
<h1>#Innovations</h1>
</section>
<section data-markdown data-transition="fade-in slide-out">
## High-frequency radar interpolation
Synthetic velocity field, red arrow = measurement
![synthetic:](images/current1.png)
</section>
<section data-markdown data-transition="fade-in slide-out">
## High-frequency radar interpolation
Adding the influence of the coast
![Coastline:](images/current2.png)
</section>
<section data-markdown data-transition="fade-in slide-out">
## High-frequency radar interpolation
Low horizontal divergence of currents
![Divergence:](images/current3.png)
</section>
<section data-markdown data-transition="fade-in slide-out">
## High-frequency radar interpolation
Including Coriolis force and geostrophically balanced mean flow<br>
![Coriolis:](images/divand_hfradar_3D_Coriolis_geo.png)
Test areas: Ibiza Channel, Gulf of Trieste
</section>
<section>
<h2>Neural network</h2>
<div class="tweet" data-src="https://twitter.com/xaprb/status/930674776317849600"></div>
</section>
<section>
<h2>Neural network</h2>
<p style="text-align:left"> From univariate to multivariate...</p>
<p style="text-align:left" ><b>Principle:</b> <br>
Use other co-variables to improve the interpolation<br>
Use neural network to derive the relationships between the variables</p>
</section>
<section data-markdown>
### Application: zooplankton count in the Baltic Sea
**Covariables:**
* [Dissolved oxygen](http://www.emodnet-chemistry.eu/products/catalogue#/metadata/087a72c0-c243-11e8-bac2-5ce0c5469bc7) → EMODnet Chemistry
* [Salinity](https://www.seadatanet.org/Products#/metadata/bf35a7c5-c843-4a23-8040-07ddcf3d8e71) → SeaDataCloud
* [Temperature](https://www.seadatanet.org/Products#/metadata/bf35a7c5-c843-4a23-8040-07ddcf3d8e71) → SeaDataCloud
* [Chlorophyll concentration](https://oceancolor.gsfc.nasa.gov/l3/) → MODIS-Aqua from NASA
* [Bathymetry](https://www.gebco.net/) → EMODnet Bathymetry, GEBCO
* [Distance from coast](https://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=idn_ceos&KeywordPath=%5BData_Center%3A+Short_Name%3D%27PacIOOS%27%5D&OrigMetadataNode=GCMD&EntryId=dist2coast_1deg&MetadataView=Full&MetadataType=0&lbnode=mdlb1) → GSFC, NASA
</section>
<section>
<h3> Application: zooplankton count in the Baltic Sea</h3>
<p class="fragment step-fade-in-then-out"><img src="images/KeratellaCruciformis-2007.png" height="450px"/></p>
<p class="fragment step-fade-in-then-out"><img src="images/KeratellaCruciformis-2008.png" height="450px"/></p>
<p class="fragment step-fade-in-then-out"><img src="images/KeratellaCruciformis-2009.png" height="450px"/></p>
<p class="fragment step-fade-in-then-out"><img src="images/KeratellaCruciformis-2010.png" height="450px"/></p>
<p class="fragment step-fade-in-then-out"><img src="images/KeratellaCruciformis-2011.png" height="450px"/></p>
<p class="fragment step-fade-in-then-out"><img src="images/KeratellaCruciformis-2012.png" height="450px"/></p>
</section>
</section>
<section>
<section>
<h1> Conclusions </h1>
<ol>
<li> `DIVA` is a software tool written in Fortran </li>
<li> `DIVAnd` is a software tool written in Julia </li>
<li> Both are designed for the spatial interpolation of data </li>
<li> We are open and willing to improve and adapt the code for different data types</li>
</p>
</section>
<section class="center">
<h1> Thanks for your attention </h1>
<h6> (and use `DIVA{nd}` many times)</h6>
</section>
</section>
</div>
<script src="https://cdn.knightlab.com/libs/juxtapose/latest/js/juxtapose.min.js"></script>
<script src="lib/js/head.min.js"></script>
<script src="https://unpkg.com/[email protected]/dist/leaflet.js"
integrity="sha512-/Nsx9X4HebavoBvEBuyp3I7od5tA0UzAxs+j83KgC8PU0kgB4XiK4Lfe4y4cgBtaRJQEIFCW+oC506aPT2L1zw=="
crossorigin=""></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/leaflet.heat/0.2.0/leaflet-heat.js"></script>
<script src="js/reveal.js"></script>
<script src="js/maps.js"></script>
<script src="js/basemaps.js"></script>
<script type="text/javascript" src="./data/medsea_coast.js"></script>
<script type="text/javascript" src="./data/medsea_mesh.js"></script>
<script type="text/javascript" src="./data/data_position5.dat"></script>
<script type="text/javascript" src="./data/grid.js"></script>
<script type="text/javascript" src="./data/finegrid.js"></script>
<script type="text/javascript" src="./data/temperature.js"></script>
<script>
// Full list of configuration options available at:
// https://github.com/hakimel/reveal.js#configuration
Reveal.initialize({
controls: true,
progress: true,
history: true,
center: false,
transition: 'slide', // none/fade/slide/convex/concave/zoom
// Optional reveal.js plugins
dependencies: [
{ src: 'lib/js/classList.js', condition: function() { return !document.body.classList; } },
{ src: 'plugin/zoom-js/zoom.js', async: true },
{ src: 'plugin/notes/notes.js', async: true },
{ src: 'plugin/markdown/marked.js', async: true },
{ src: 'plugin/markdown/markdown.js', async: true },
{ src: 'plugin/embed-tweet/embed-tweet.js' },
{ src: 'plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } }
]
});
function runOnState(state, o) {
Reveal.addEventListener(state, function(e) {
var removeListener = function() {
o.stop();
Reveal.removeEventListener('slidechanged', removeListener);
}
o.start();
setTimeout(function() {
Reveal.addEventListener('slidechanged', removeListener);
}, 0);
});
}
runOnState('diva-map', window.divaMap);
</script>
</body>
</html>