-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
146 lines (110 loc) · 5.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from network import *
from data import get_dataset, DataLoader, collate_fn, get_param_size
from torch import optim
import numpy as np
import argparse
import os
import time
import torch
import torch.nn as nn
use_cuda = torch.cuda.is_available()
def main(args):
# Get dataset
dataset = get_dataset()
# Construct model
if use_cuda:
model = nn.DataParallel(Tacotron().cuda())
else:
model = Tacotron()
# Make optimizer
optimizer = optim.Adam(model.parameters(), lr=hp.lr)
# Load checkpoint if exists
try:
checkpoint = torch.load(os.path.join(hp.checkpoint_path,'checkpoint_%d.pth.tar'% args.restore_step))
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("\n--------model restored at step %d--------\n" % args.restore_step)
except:
print("\n--------Start New Training--------\n")
# Training
model = model.train()
# Make checkpoint directory if not exists
if not os.path.exists(hp.checkpoint_path):
os.mkdir(hp.checkpoint_path)
# Decide loss function
if use_cuda:
criterion = nn.L1Loss().cuda()
else:
criterion = nn.L1Loss()
# Loss for frequency of human register
n_priority_freq = int(3000 / (hp.sample_rate * 0.5) * hp.num_freq)
for epoch in range(hp.epochs):
dataloader = DataLoader(dataset, batch_size=args.batch_size,
shuffle=True, collate_fn=collate_fn, drop_last=True, num_workers=8)
for i, data in enumerate(dataloader):
current_step = i + args.restore_step + epoch * len(dataloader) + 1
optimizer.zero_grad()
# Make decoder input by concatenating [GO] Frame
try:
mel_input = np.concatenate((np.zeros([args.batch_size, hp.num_mels, 1], dtype=np.float32),data[2][:,:,1:]), axis=2)
except:
raise TypeError("not same dimension")
if use_cuda:
characters = Variable(torch.from_numpy(data[0]).type(torch.cuda.LongTensor), requires_grad=False).cuda()
mel_input = Variable(torch.from_numpy(mel_input).type(torch.cuda.FloatTensor), requires_grad=False).cuda()
mel_spectrogram = Variable(torch.from_numpy(data[2]).type(torch.cuda.FloatTensor), requires_grad=False).cuda()
linear_spectrogram = Variable(torch.from_numpy(data[1]).type(torch.cuda.FloatTensor), requires_grad=False).cuda()
else:
characters = Variable(torch.from_numpy(data[0]).type(torch.LongTensor), requires_grad=False)
mel_input = Variable(torch.from_numpy(mel_input).type(torch.FloatTensor), requires_grad=False)
mel_spectrogram = Variable(torch.from_numpy(data[2]).type(torch.FloatTensor), requires_grad=False)
linear_spectrogram = Variable(torch.from_numpy(data[1]).type(torch.FloatTensor), requires_grad=False)
# Forward
mel_output, linear_output = model.forward(characters, mel_input)
# Calculate loss
mel_loss = criterion(mel_output, mel_spectrogram)
linear_loss = torch.abs(linear_output-linear_spectrogram)
linear_loss = 0.5 * torch.mean(linear_loss) + 0.5 * torch.mean(linear_loss[:,:n_priority_freq,:])
loss = mel_loss + linear_loss
loss = loss.cuda()
start_time = time.time()
# Calculate gradients
loss.backward()
# clipping gradients
nn.utils.clip_grad_norm(model.parameters(), 1.)
# Update weights
optimizer.step()
time_per_step = time.time() - start_time
if current_step % hp.log_step == 0:
print("time per step: %.2f sec" % time_per_step)
print("At timestep %d" % current_step)
print("linear loss: %.4f" % linear_loss.data[0])
print("mel loss: %.4f" % mel_loss.data[0])
print("total loss: %.4f" % loss.data[0])
if current_step % hp.save_step == 0:
save_checkpoint({'model':model.state_dict(),
'optimizer':optimizer.state_dict()},
os.path.join(hp.checkpoint_path,'checkpoint_%d.pth.tar' % current_step))
print("save model at step %d ..." % current_step)
if current_step in hp.decay_step:
optimizer = adjust_learning_rate(optimizer, current_step)
def save_checkpoint(state, filename='checkpoint.pth.tar'):
torch.save(state, filename)
def adjust_learning_rate(optimizer, step):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
if step == 500000:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.0005
elif step == 1000000:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.0003
elif step == 2000000:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.0001
return optimizer
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--restore_step', type=int, help='Global step to restore checkpoint', default=0)
parser.add_argument('--batch_size', type=int, help='Batch size', default=32)
args = parser.parse_args()
main(args)