-
Notifications
You must be signed in to change notification settings - Fork 2
/
module.py
291 lines (229 loc) · 10.5 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import numpy as np
import hyperparams as hp
use_cuda = torch.cuda.is_available()
class SeqLinear(nn.Module):
"""
Linear layer for sequences
"""
def __init__(self, input_size, output_size, time_dim=2):
"""
:param input_size: dimension of input
:param output_size: dimension of output
:param time_dim: index of time dimension
"""
super(SeqLinear, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.time_dim = time_dim
self.linear = nn.Linear(input_size, output_size)
def forward(self, input_):
"""
:param input_: sequences
:return: outputs
"""
batch_size = input_.size()[0]
if self.time_dim == 2:
input_ = input_.transpose(1, 2).contiguous()
input_ = input_.view(-1, self.input_size)
out = self.linear(input_).view(batch_size, -1, self.output_size)
if self.time_dim == 2:
out = out.contiguous().transpose(1, 2)
return out
class Prenet(nn.Module):
"""
Prenet before passing through the network
"""
def __init__(self, input_size, hidden_size, output_size):
"""
:param input_size: dimension of input
:param hidden_size: dimension of hidden unit
:param output_size: dimension of output
"""
super(Prenet, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
self.layer = nn.Sequential(OrderedDict([
('fc1', SeqLinear(self.input_size, self.hidden_size)),
('relu1', nn.ReLU()),
('dropout1', nn.Dropout(0.5)),
('fc2', SeqLinear(self.hidden_size, self.output_size)),
('relu2', nn.ReLU()),
('dropout2', nn.Dropout(0.5)),
]))
def forward(self, input_):
out = self.layer(input_)
return out
class CBHG(nn.Module):
"""
CBHG Module
"""
def __init__(self, hidden_size, K=16, projection_size = 128, num_gru_layers=2, max_pool_kernel_size=2, is_post=False):
"""
:param hidden_size: dimension of hidden unit
:param K: # of convolution banks
:param projection_size: dimension of projection unit
:param num_gru_layers: # of layers of GRUcell
:param max_pool_kernel_size: max pooling kernel size
:param is_post: whether post processing or not
"""
super(CBHG, self).__init__()
self.hidden_size = hidden_size
self.num_gru_layers = num_gru_layers
self.projection_size = projection_size
self.convbank_list = nn.ModuleList()
self.convbank_list.append(nn.Conv1d(in_channels=projection_size,
out_channels=hidden_size,
kernel_size=1,
padding=int(np.floor(1/2))))
for i in range(2, K+1):
self.convbank_list.append(nn.Conv1d(in_channels=hidden_size,
out_channels=hidden_size,
kernel_size=i,
padding=int(np.floor(i/2))))
self.batchnorm_list = nn.ModuleList()
for i in range(1, K+1):
self.batchnorm_list.append(nn.BatchNorm1d(hidden_size))
convbank_outdim = hidden_size * K
if is_post:
self.conv_projection_1 = nn.Conv1d(in_channels=convbank_outdim,
out_channels=hidden_size * 2,
kernel_size=3,
padding=int(np.floor(3/2)))
self.conv_projection_2 = nn.Conv1d(in_channels=hidden_size * 2,
out_channels=projection_size,
kernel_size=3,
padding=int(np.floor(3/2)))
self.batchnorm_proj_1 = nn.BatchNorm1d(hidden_size * 2)
else:
self.conv_projection_1 = nn.Conv1d(in_channels=convbank_outdim,
out_channels=hidden_size,
kernel_size=3,
padding=int(np.floor(3 / 2)))
self.conv_projection_2 = nn.Conv1d(in_channels=hidden_size,
out_channels=projection_size,
kernel_size=3,
padding=int(np.floor(3 / 2)))
self.batchnorm_proj_1 = nn.BatchNorm1d(hidden_size)
self.batchnorm_proj_2 = nn.BatchNorm1d(projection_size)
self.max_pool = nn.MaxPool1d(max_pool_kernel_size, stride=1, padding=1)
self.highway = Highwaynet(self.projection_size)
self.gru = nn.GRU(self.projection_size, self.hidden_size, num_layers=2,
batch_first=True,
bidirectional=True)
def _conv_fit_dim(self, x, kernel_size=3):
if kernel_size % 2 == 0:
return x[:,:,:-1]
else:
return x
def forward(self, input_):
input_ = input_.contiguous()
batch_size = input_.size()[0]
convbank_list = list()
convbank_input = input_
# Convolution bank filters
for k, (conv, batchnorm) in enumerate(zip(self.convbank_list, self.batchnorm_list)):
convbank_input = F.relu(batchnorm(self._conv_fit_dim(conv(convbank_input), k+1).contiguous()))
convbank_list.append(convbank_input)
# Concatenate all features
conv_cat = torch.cat(convbank_list, dim=1)
# Max pooling
conv_cat = self.max_pool(conv_cat)[:,:,:-1]
# Projection
conv_projection = F.relu(self.batchnorm_proj_1(self._conv_fit_dim(self.conv_projection_1(conv_cat))))
conv_projection = self.batchnorm_proj_2(self._conv_fit_dim(self.conv_projection_2(conv_projection))) + input_
# Highway networks
highway = self.highway.forward(conv_projection)
highway = torch.transpose(highway, 1,2)
# Bidirectional GRU
if use_cuda:
init_gru = Variable(torch.zeros(2 * self.num_gru_layers, batch_size, self.hidden_size)).cuda()
else:
init_gru = Variable(torch.zeros(2 * self.num_gru_layers, batch_size, self.hidden_size))
self.gru.flatten_parameters()
out, _ = self.gru(highway, init_gru)
return out
class Highwaynet(nn.Module):
"""
Highway network
"""
def __init__(self, num_units, num_layers=4):
"""
:param num_units: dimension of hidden unit
:param num_layers: # of highway layers
"""
super(Highwaynet, self).__init__()
self.num_units = num_units
self.num_layers = num_layers
self.gates = nn.ModuleList()
self.linears = nn.ModuleList()
for _ in range(self.num_layers):
self.linears.append(SeqLinear(num_units, num_units))
self.gates.append(SeqLinear(num_units, num_units))
def forward(self, input_):
out = input_
# highway gated function
for fc1, fc2 in zip(self.linears, self.gates):
h = F.relu(fc1.forward(out))
t = F.sigmoid(fc2.forward(out))
c = 1. - t
out = h * t + out * c
return out
class AttentionDecoder(nn.Module):
"""
Decoder with attention mechanism (Vinyals et al.)
"""
def __init__(self, num_units):
"""
:param num_units: dimension of hidden units
"""
super(AttentionDecoder, self).__init__()
self.num_units = num_units
self.v = nn.Linear(num_units, 1, bias=False)
self.W1 = nn.Linear(num_units, num_units, bias=False)
self.W2 = nn.Linear(num_units, num_units, bias=False)
self.attn_grucell = nn.GRUCell(num_units // 2, num_units)
self.gru1 = nn.GRUCell(num_units, num_units)
self.gru2 = nn.GRUCell(num_units, num_units)
self.attn_projection = nn.Linear(num_units * 2, num_units)
self.out = nn.Linear(num_units, hp.num_mels * hp.outputs_per_step)
def forward(self, decoder_input, memory, attn_hidden, gru1_hidden, gru2_hidden):
memory_len = memory.size()[1]
batch_size = memory.size()[0]
# Get keys
keys = self.W1(memory.contiguous().view(-1, self.num_units))
keys = keys.view(-1, memory_len, self.num_units)
# Get hidden state (query) passed through GRUcell
d_t = self.attn_grucell(decoder_input, attn_hidden)
# Duplicate query with same dimension of keys for matrix operation (Speed up)
d_t_duplicate = self.W2(d_t).unsqueeze(1).expand_as(memory)
# Calculate attention score and get attention weights
attn_weights = self.v(F.tanh(keys + d_t_duplicate).view(-1, self.num_units)).view(-1, memory_len, 1)
attn_weights = attn_weights.squeeze(2)
attn_weights = F.softmax(attn_weights)
# Concatenate with original query
d_t_prime = torch.bmm(attn_weights.view([batch_size,1,-1]), memory).squeeze(1)
# Residual GRU
gru1_input = self.attn_projection(torch.cat([d_t, d_t_prime], 1))
gru1_hidden = self.gru1(gru1_input, gru1_hidden)
gru2_input = gru1_input + gru1_hidden
gru2_hidden = self.gru2(gru2_input, gru2_hidden)
bf_out = gru2_input + gru2_hidden
# Output
output = self.out(bf_out).view(-1, hp.num_mels, hp.outputs_per_step)
return output, d_t, gru1_hidden, gru2_hidden
def inithidden(self, batch_size):
if use_cuda:
attn_hidden = Variable(torch.zeros(batch_size, self.num_units), requires_grad=False).cuda()
gru1_hidden = Variable(torch.zeros(batch_size, self.num_units), requires_grad=False).cuda()
gru2_hidden = Variable(torch.zeros(batch_size, self.num_units), requires_grad=False).cuda()
else:
attn_hidden = Variable(torch.zeros(batch_size, self.num_units), requires_grad=False)
gru1_hidden = Variable(torch.zeros(batch_size, self.num_units), requires_grad=False)
gru2_hidden = Variable(torch.zeros(batch_size, self.num_units), requires_grad=False)
return attn_hidden, gru1_hidden, gru2_hidden