-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdsin_conflict-20171025-193403.txt
931 lines (918 loc) · 47 KB
/
dsin_conflict-20171025-193403.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
#1
char Aclass(3,24)
Adymosim
1.4
Modelica experiment file
# Experiment parameters
double experiment(7,1)
0 # StartTime Time at which integration starts
# (and linearization and trimming time)
2.2730000000000000E+001 # StopTime Time at which integration stops
0 # Increment Communication step size, if > 0
500 # nInterval Number of communication intervals, if > 0
1.0000000000000000E-004 # Tolerance Relative precision of signals for
# simulation, linearization and trimming
0 # MaxFixedStep Maximum step size of fixed step size
# integrators, if > 0.0
8 # Algorithm Integration algorithm as integer (1...28)
#
# | model| | | dense | state |
# Algorithm | typ | stiff | order | output| event |
# ------------+------+-------+--------+-------+-------+
# 1 | deabm | ode | no | 1-12 | yes | no |
# 2 | lsode1 | ode | no | 1-12 | yes | no |
# 3 | lsode2 | ode | yes | 1-5 | yes | no |
# 4 | lsodar | ode | both |1-12,1-5| yes | yes |
# 5 | dopri5 | ode | no | 5 | no | no |
# 6 | dopri8 | ode | no | 8 | no | no |
# 7 | grk4t | ode | yes | 4 | no | no |
# 8 | dassl | dae | yes | 1-5 | yes | yes |
# 9 | odassl | hdae | yes | 1-5 | yes | yes |
# 10 | mexx | hdae | no | 2-24 | no | no |
# 11 | euler | ode | no | 1 | no | yes |
# 12 | rkfix2 | ode | no | 2 | no | yes |
# 13 | rkfix3 | ode | no | 3 | no | yes |
# 14 | rkfix4 | ode | no | 4 | no | yes |
#>=14| others | ode |yes/no | 2-5 | yes | yes |
# ---+--------+------+-------+--------+-------+-------+
# euler and rkfix have fixed stepsize.
# Method tuning parameters
double method(27,1)
1 # grid type of communication time grid, defined by
# = 1: equidistant points ("Increment/nInterval")
# = 2: vector of grid points ("tgrid")
# = 3: variable step integrator (automatically)
# = 4: model (call of "increment" in Dymola, e.g.
# incr=Time > 2 then 0 else 0.1
# dummy=increment(incr))
# grid = 1,3 is stopped by "StopTime"
# grid = 2 is stopped by "tgrid(last)"
# grid = 4 runs forever (stopped by model)
1 # nt Use every NT time instant, if grid = 3
3 # dense 1/2/3 restart/step/interpolate GRID points
1 # evgrid 0/1 do not/save event points in comm. time grid
1 # evu 0/1 U-discontinuity does not/trigger events
0 # evuord U-discontinuity order to consider (0,1,...)
0 # error 0/1/2 One message/warning/error messages
0 # jac 0/1 Compute jacobian numerically/by BLOCKJ
0 # xd0c 0/1 Compute/set XD0
0 # f3 0/1 Ignore/use F3 of HDAE (= index 1)
0 # f4 0/1 Ignore/use F4 of HDAE (= index 2)
0 # f5 0/1 Ignore/use F5 of HDAE (= invar.)
0 # debug flags for debug information (1<<0 uses pdebug)
100 # pdebug priority of debug information (1...100)
0 # fmax Maximum number of evaluations of BLOCKF, if > 0
0 # ordmax Maximum allowed integration order, if > 0
0 # hmax Maximum absolute stepsize, if > 0
0 # hmin Minimum absolute stepsize, if > 0 (use with care!)
0 # h0 Stepsize to be attempted on first step, if > 0
2.0000000000000000E-014 # teps Bound to check, if 2 equal time instants
1.0000000000000000E-010 # eveps Hysteresis epsilon at event points
20 # eviter Maximum number of event iterations
9.9999999999999995E-007 # delaym Minimum time increment in delay buffers
1 # fexcep 0/1 floating exception crashes/stops dymosim
1 # tscale clock-time = tscale*simulation-time, if grid = 5
# > 1: simulation too slow
# = 1: simulation-time = real-time
# < 1: simulation too fast
1 # shared (not used)
2473 # memkey (not used)
# Output parameters
int settings(13,1)
0 # lprec 0/1 do not/store result data in double
1 # lx 0/1 do not/store x (state variables)
1 # lxd 0/1 do not/store xd (derivative of states)
1 # lu 0/1 do not/store u (input signals)
1 # ly 0/1 do not/store y (output signals)
0 # lz 0/1 do not/store z (indicator signals)
1 # lw 0/1 do not/store w (auxiliary signals)
1 # la 0/1 do not/store a (alias signals)
0 # lperf 0/1 do not/store performance indicators
0 # levent 0/1 do not/store event point
1 # lres 0/1 do not/store results on result file
0 # lshare 0/1 do not/store info data for shared memory on dsshare.txt
1 # lform 0/1 ASCII/Matlab-binary storage format of results
# (for simulation/linearization; not for trimming)
# Names of initial variables
char initialName(193,35)
pvField.pvModuleData.c1
pvField.pvModuleData.c2
pvField.pvModuleData.cs1
pvField.pvModuleData.cs2
pvField.pvModuleData.Eg
pvField.pvModuleData.height
pvField.pvModuleData.Ik0
pvField.pvModuleData.nCelSer
pvField.pvModuleData.nCelPar
pvField.pvModuleData.PEl_nominal
pvField.pvModuleData.RSer
pvField.pvModuleData.RPar
pvField.pvModuleData.tIk0
pvField.pvModuleData.tUl0
pvField.pvModuleData.Ul0
pvField.pvModuleData.width
pvField.nModPar
pvField.nModSer
pvField.use_AngleDegTil_in
pvField.angleDegTil_constant
pvField.angleDegTil
pvField.use_AngleDegAzi_in
pvField.angleDegAzi_constant
pvField.angleDegAzi
pvField.use_GSC_in
pvField.GSC_constant
pvField.TAmb
pvField.etaMod
pvField.PField
pvField.IField
pvField.AField
pvField.GSC_internal
pvField.angleDegAzi_internal
pvField.angleDegTil_internal
pvField.opticalModel.GSC
pvField.opticalModel.ITotRed
pvField.electricalModel.nCelPar
pvField.electricalModel.nCelSer
pvField.electricalModel.Eg
pvField.electricalModel.T
pvField.electricalModel.P
pvField.electricalModel.I
pvField.electricalModel.Ut
pvField.electricalModel.e
pvField.electricalModel.k
pvField.electricalModel.c1
pvField.electricalModel.c2
pvField.electricalModel.cs1
pvField.electricalModel.cs2
pvField.electricalModel.RPar
pvField.electricalModel.RSer
pvField.electricalModel.IPho
pvField.electricalModel.ISat1
pvField.electricalModel.ISat2
pvField.electricalModel.U
pvField.thermalModel.f
pvField.gainP.k
pvField.gainI.k
pvField.UField
pvField.gainU.k
IVcurve_ref.TCel
IVcurve_ref.ITot
IVcurve_ref.UI[1, 1]
IVcurve_ref.UI[1, 2]
IVcurve_ref.UI[2, 1]
IVcurve_ref.UI[2, 2]
IVcurve_ref.UI[3, 1]
IVcurve_ref.UI[3, 2]
IVcurve_ref.UI[4, 1]
IVcurve_ref.UI[4, 2]
IVcurve_ref.UI[5, 1]
IVcurve_ref.UI[5, 2]
IVcurve_ref.UI[6, 1]
IVcurve_ref.UI[6, 2]
IVcurve_ref.UI[7, 1]
IVcurve_ref.UI[7, 2]
IVcurve_ref.UI[8, 1]
IVcurve_ref.UI[8, 2]
IVcurve_ref.UI[9, 1]
IVcurve_ref.UI[9, 2]
IVcurve_ref.UI[10, 1]
IVcurve_ref.UI[10, 2]
IVcurve_ref.UI[11, 1]
IVcurve_ref.UI[11, 2]
IVcurve_ref.UI[12, 1]
IVcurve_ref.UI[12, 2]
IVcurve_ref.UI[13, 1]
IVcurve_ref.UI[13, 2]
IVcurve_ref.UI[14, 1]
IVcurve_ref.UI[14, 2]
IVcurve_ref.UI[15, 1]
IVcurve_ref.UI[15, 2]
IVcurve_ref.UI[16, 1]
IVcurve_ref.UI[16, 2]
IVcurve_ref.UI[17, 1]
IVcurve_ref.UI[17, 2]
IVcurve_ref.UI[18, 1]
IVcurve_ref.UI[18, 2]
IVcurve_ref.UI[19, 1]
IVcurve_ref.UI[19, 2]
IVcurve_ref.UI[20, 1]
IVcurve_ref.UI[20, 2]
IVcurve_ref.UI[21, 1]
IVcurve_ref.UI[21, 2]
IVcurve_ref.UI[22, 1]
IVcurve_ref.UI[22, 2]
IVcurve_ref.UI[23, 1]
IVcurve_ref.UI[23, 2]
IVcurve_ref.UI[24, 1]
IVcurve_ref.UI[24, 2]
IVcurve_ref.UI[25, 1]
IVcurve_ref.UI[25, 2]
constRadiation.IrrDir_constant
constRadiation.IrrDif_constant
constRadiation.angleDegInc_constant
constTemp.k
IVcurve_reference.table[1, 1]
IVcurve_reference.table[1, 2]
IVcurve_reference.table[2, 1]
IVcurve_reference.table[2, 2]
IVcurve_reference.table[3, 1]
IVcurve_reference.table[3, 2]
IVcurve_reference.table[4, 1]
IVcurve_reference.table[4, 2]
IVcurve_reference.table[5, 1]
IVcurve_reference.table[5, 2]
IVcurve_reference.table[6, 1]
IVcurve_reference.table[6, 2]
IVcurve_reference.table[7, 1]
IVcurve_reference.table[7, 2]
IVcurve_reference.table[8, 1]
IVcurve_reference.table[8, 2]
IVcurve_reference.table[9, 1]
IVcurve_reference.table[9, 2]
IVcurve_reference.table[10, 1]
IVcurve_reference.table[10, 2]
IVcurve_reference.table[11, 1]
IVcurve_reference.table[11, 2]
IVcurve_reference.table[12, 1]
IVcurve_reference.table[12, 2]
IVcurve_reference.table[13, 1]
IVcurve_reference.table[13, 2]
IVcurve_reference.table[14, 1]
IVcurve_reference.table[14, 2]
IVcurve_reference.table[15, 1]
IVcurve_reference.table[15, 2]
IVcurve_reference.table[16, 1]
IVcurve_reference.table[16, 2]
IVcurve_reference.table[17, 1]
IVcurve_reference.table[17, 2]
IVcurve_reference.table[18, 1]
IVcurve_reference.table[18, 2]
IVcurve_reference.table[19, 1]
IVcurve_reference.table[19, 2]
IVcurve_reference.table[20, 1]
IVcurve_reference.table[20, 2]
IVcurve_reference.table[21, 1]
IVcurve_reference.table[21, 2]
IVcurve_reference.table[22, 1]
IVcurve_reference.table[22, 2]
IVcurve_reference.table[23, 1]
IVcurve_reference.table[23, 2]
IVcurve_reference.table[24, 1]
IVcurve_reference.table[24, 2]
IVcurve_reference.table[25, 1]
IVcurve_reference.table[25, 2]
IVcurve_reference.offset
IVcurve_reference.startTime
IVcurve_reference.timeScale
IVcurve_reference.y
IVcurve_reference.a
IVcurve_reference.b
IVcurve_reference.last
IVcurve_reference.nextEvent
IVcurve_reference.nextEventScaled
IVcurve_reference.timeScaled
constV.k
increasVoltage.height
increasVoltage.duration
increasVoltage.offset
increasVoltage.startTime
ISum.significantDigits
ISum.nu
ISum.y
ISum.k[1]
ISum.k[2]
Idiff_sq.y
sqrt1.y
Idiff_sum.k
Idiff_sum.initType
Idiff_sum.y_start
Idiff_sum.y
Idiff_sum.der(y)
double initialValue(193,6)
-1 5.0464845003300000E-003 0 0
1 280 # pvField.pvModuleData.c1
-1 1.5241566775899999E-004 0 0
1 280 # pvField.pvModuleData.c2
-1 3.4488095762100002E+001 0 0
1 280 # pvField.pvModuleData.cs1
-1 4.6331415770500001E-003 0 0
1 280 # pvField.pvModuleData.cs2
-1 1.1070000000000000E+000 0 0
1 280 # pvField.pvModuleData.Eg
-1 1.1950000000000001E+000 0 0
1 280 # pvField.pvModuleData.height
-1 5.5300000000000002E+000 0 0
1 280 # pvField.pvModuleData.Ik0
-1 36 0 0
1 282 # pvField.pvModuleData.nCelSer
-1 1 0 0
1 282 # pvField.pvModuleData.nCelPar
-1 100 0 0
1 280 # pvField.pvModuleData.PEl_nominal
-1 1.3731009878800000E-002 0 0
1 280 # pvField.pvModuleData.RSer
-1 7.8528868879399996E+000 0 0
1 280 # pvField.pvModuleData.RPar
-1 1.6590000000000000E+000 0 0
1 280 # pvField.pvModuleData.tIk0
-1 -5.9999999999999998E-002 0 0
1 280 # pvField.pvModuleData.tUl0
-1 2.2609999999999999E+001 0 0
1 280 # pvField.pvModuleData.Ul0
-1 5.4500000000000004E-001 0 0
1 280 # pvField.pvModuleData.width
-1 1 0 0
1 282 # pvField.nModPar
-1 1 0 0
1 282 # pvField.nModSer
0 0 0 0
6 257 # pvField.use_AngleDegTil_in
0 0 0 0
6 256 # pvField.angleDegTil_constant
0 0 0 0
6 256 # pvField.angleDegTil
0 0 0 0
6 257 # pvField.use_AngleDegAzi_in
0 0 0 0
6 256 # pvField.angleDegAzi_constant
0 0 0 0
6 256 # pvField.angleDegAzi
0 0 0 0
6 257 # pvField.use_GSC_in
0 0 0 1
6 256 # pvField.GSC_constant
0 0 0 1.0000000000000000E+100
6 256 # pvField.TAmb
0 0 0 0
6 256 # pvField.etaMod
0 0 0 0
6 256 # pvField.PField
0 0 0 0
6 256 # pvField.IField
0 0 0 0
6 256 # pvField.AField
0 0 0 0
6 1280 # pvField.GSC_internal
0 0 0 0
6 1280 # pvField.angleDegAzi_internal
0 0 0 0
6 1280 # pvField.angleDegTil_internal
0 0 0 1
6 256 # pvField.opticalModel.GSC
0 0 0 0
6 256 # pvField.opticalModel.ITotRed
0 0 0 0
6 258 # pvField.electricalModel.nCelPar
0 0 0 0
6 258 # pvField.electricalModel.nCelSer
0 0 0 0
6 256 # pvField.electricalModel.Eg
0 0 0 1.0000000000000000E+100
6 256 # pvField.electricalModel.T
0 0 0 0
6 256 # pvField.electricalModel.P
0 0 0 0
6 288 # pvField.electricalModel.I
0 0 0 0
6 256 # pvField.electricalModel.Ut
0 1.6021766209245611E-019 0 0
6 1280 # pvField.electricalModel.e
0 1.3806485097962231E-023 0 0
6 1280 # pvField.electricalModel.k
0 0 0 0
6 256 # pvField.electricalModel.c1
0 0 0 0
6 256 # pvField.electricalModel.c2
0 0 0 0
6 256 # pvField.electricalModel.cs1
0 0 0 0
6 256 # pvField.electricalModel.cs2
0 0 0 0
6 256 # pvField.electricalModel.RPar
0 0 0 0
6 256 # pvField.electricalModel.RSer
0 0 0 0
6 256 # pvField.electricalModel.IPho
0 0 0 0
6 256 # pvField.electricalModel.ISat1
0 0 0 0
6 256 # pvField.electricalModel.ISat2
0 0 0 0
6 256 # pvField.electricalModel.U
-1 4.2999999999999997E-002 0 0
1 280 # pvField.thermalModel.f
0 1 0 0
6 256 # pvField.gainP.k
0 1 0 0
6 256 # pvField.gainI.k
0 0 0 0
6 256 # pvField.UField
0 1 0 0
6 256 # pvField.gainU.k
-1 25 0 1.0000000000000000E+100
1 280 # IVcurve_ref.TCel
-1 1000 0 0
1 280 # IVcurve_ref.ITot
-1 0 0 0
1 280 # IVcurve_ref.UI[1, 1]
-1 5.6200000000000001E+000 0 0
1 280 # IVcurve_ref.UI[1, 2]
-1 1.0000000000000001E-001 0 0
1 280 # IVcurve_ref.UI[2, 1]
-1 5.6200000000000001E+000 0 0
1 280 # IVcurve_ref.UI[2, 2]
-1 5 0 0
1 280 # IVcurve_ref.UI[3, 1]
-1 5.6100000000000003E+000 0 0
1 280 # IVcurve_ref.UI[3, 2]
-1 10 0 0
1 280 # IVcurve_ref.UI[4, 1]
-1 5.5999999999999996E+000 0 0
1 280 # IVcurve_ref.UI[4, 2]
-1 15 0 0
1 280 # IVcurve_ref.UI[5, 1]
-1 5.5800000000000001E+000 0 0
1 280 # IVcurve_ref.UI[5, 2]
-1 1.5400000000000000E+001 0 0
1 280 # IVcurve_ref.UI[6, 1]
-1 5.5700000000000003E+000 0 0
1 280 # IVcurve_ref.UI[6, 2]
-1 1.5800000000000001E+001 0 0
1 280 # IVcurve_ref.UI[7, 1]
-1 5.5599999999999996E+000 0 0
1 280 # IVcurve_ref.UI[7, 2]
-1 1.6199999999999999E+001 0 0
1 280 # IVcurve_ref.UI[8, 1]
-1 5.5499999999999998E+000 0 0
1 280 # IVcurve_ref.UI[8, 2]
-1 1.6600000000000001E+001 0 0
1 280 # IVcurve_ref.UI[9, 1]
-1 5.5199999999999996E+000 0 0
1 280 # IVcurve_ref.UI[9, 2]
-1 17 0 0
1 280 # IVcurve_ref.UI[10, 1]
-1 5.4900000000000002E+000 0 0
1 280 # IVcurve_ref.UI[10, 2]
-1 1.7399999999999999E+001 0 0
1 280 # IVcurve_ref.UI[11, 1]
-1 5.4500000000000002E+000 0 0
1 280 # IVcurve_ref.UI[11, 2]
-1 1.7800000000000001E+001 0 0
1 280 # IVcurve_ref.UI[12, 1]
-1 5.3799999999999999E+000 0 0
1 280 # IVcurve_ref.UI[12, 2]
-1 1.8199999999999999E+001 0 0
1 280 # IVcurve_ref.UI[13, 1]
-1 5.2999999999999998E+000 0 0
1 280 # IVcurve_ref.UI[13, 2]
-1 1.8600000000000001E+001 0 0
1 280 # IVcurve_ref.UI[14, 1]
-1 5.1799999999999997E+000 0 0
1 280 # IVcurve_ref.UI[14, 2]
-1 19 0 0
1 280 # IVcurve_ref.UI[15, 1]
-1 5.0199999999999996E+000 0 0
1 280 # IVcurve_ref.UI[15, 2]
-1 1.9399999999999999E+001 0 0
1 280 # IVcurve_ref.UI[16, 1]
-1 4.8099999999999996E+000 0 0
1 280 # IVcurve_ref.UI[16, 2]
-1 1.9800000000000001E+001 0 0
1 280 # IVcurve_ref.UI[17, 1]
-1 4.5400000000000000E+000 0 0
1 280 # IVcurve_ref.UI[17, 2]
-1 2.0199999999999999E+001 0 0
1 280 # IVcurve_ref.UI[18, 1]
-1 4.1799999999999997E+000 0 0
1 280 # IVcurve_ref.UI[18, 2]
-1 2.0600000000000001E+001 0 0
1 280 # IVcurve_ref.UI[19, 1]
-1 3.7599999999999998E+000 0 0
1 280 # IVcurve_ref.UI[19, 2]
-1 21 0 0
1 280 # IVcurve_ref.UI[20, 1]
-1 3.2400000000000002E+000 0 0
1 280 # IVcurve_ref.UI[20, 2]
-1 2.1399999999999999E+001 0 0
1 280 # IVcurve_ref.UI[21, 1]
-1 2.6299999999999999E+000 0 0
1 280 # IVcurve_ref.UI[21, 2]
-1 2.1800000000000001E+001 0 0
1 280 # IVcurve_ref.UI[22, 1]
-1 1.9399999999999999E+000 0 0
1 280 # IVcurve_ref.UI[22, 2]
-1 2.2199999999999999E+001 0 0
1 280 # IVcurve_ref.UI[23, 1]
-1 1.1599999999999999E+000 0 0
1 280 # IVcurve_ref.UI[23, 2]
-1 2.2600000000000001E+001 0 0
1 280 # IVcurve_ref.UI[24, 1]
-1 2.9999999999999999E-001 0 0
1 280 # IVcurve_ref.UI[24, 2]
-1 2.2730000000000000E+001 0 0
1 280 # IVcurve_ref.UI[25, 1]
-1 0 0 0
1 280 # IVcurve_ref.UI[25, 2]
0 0 0 0
6 256 # constRadiation.IrrDir_constant
-1 0 0 0
1 280 # constRadiation.IrrDif_constant
-1 0 0 0
1 280 # constRadiation.angleDegInc_constant
0 1 0 0
6 256 # constTemp.k
0 0 0 0
6 256 # IVcurve_reference.table[1, 1]
0 0 0 0
6 256 # IVcurve_reference.table[1, 2]
0 0 0 0
6 256 # IVcurve_reference.table[2, 1]
0 0 0 0
6 256 # IVcurve_reference.table[2, 2]
0 0 0 0
6 256 # IVcurve_reference.table[3, 1]
0 0 0 0
6 256 # IVcurve_reference.table[3, 2]
0 0 0 0
6 256 # IVcurve_reference.table[4, 1]
0 0 0 0
6 256 # IVcurve_reference.table[4, 2]
0 0 0 0
6 256 # IVcurve_reference.table[5, 1]
0 0 0 0
6 256 # IVcurve_reference.table[5, 2]
0 0 0 0
6 256 # IVcurve_reference.table[6, 1]
0 0 0 0
6 256 # IVcurve_reference.table[6, 2]
0 0 0 0
6 256 # IVcurve_reference.table[7, 1]
0 0 0 0
6 256 # IVcurve_reference.table[7, 2]
0 0 0 0
6 256 # IVcurve_reference.table[8, 1]
0 0 0 0
6 256 # IVcurve_reference.table[8, 2]
0 0 0 0
6 256 # IVcurve_reference.table[9, 1]
0 0 0 0
6 256 # IVcurve_reference.table[9, 2]
0 0 0 0
6 256 # IVcurve_reference.table[10, 1]
0 0 0 0
6 256 # IVcurve_reference.table[10, 2]
0 0 0 0
6 256 # IVcurve_reference.table[11, 1]
0 0 0 0
6 256 # IVcurve_reference.table[11, 2]
0 0 0 0
6 256 # IVcurve_reference.table[12, 1]
0 0 0 0
6 256 # IVcurve_reference.table[12, 2]
0 0 0 0
6 256 # IVcurve_reference.table[13, 1]
0 0 0 0
6 256 # IVcurve_reference.table[13, 2]
0 0 0 0
6 256 # IVcurve_reference.table[14, 1]
0 0 0 0
6 256 # IVcurve_reference.table[14, 2]
0 0 0 0
6 256 # IVcurve_reference.table[15, 1]
0 0 0 0
6 256 # IVcurve_reference.table[15, 2]
0 0 0 0
6 256 # IVcurve_reference.table[16, 1]
0 0 0 0
6 256 # IVcurve_reference.table[16, 2]
0 0 0 0
6 256 # IVcurve_reference.table[17, 1]
0 0 0 0
6 256 # IVcurve_reference.table[17, 2]
0 0 0 0
6 256 # IVcurve_reference.table[18, 1]
0 0 0 0
6 256 # IVcurve_reference.table[18, 2]
0 0 0 0
6 256 # IVcurve_reference.table[19, 1]
0 0 0 0
6 256 # IVcurve_reference.table[19, 2]
0 0 0 0
6 256 # IVcurve_reference.table[20, 1]
0 0 0 0
6 256 # IVcurve_reference.table[20, 2]
0 0 0 0
6 256 # IVcurve_reference.table[21, 1]
0 0 0 0
6 256 # IVcurve_reference.table[21, 2]
0 0 0 0
6 256 # IVcurve_reference.table[22, 1]
0 0 0 0
6 256 # IVcurve_reference.table[22, 2]
0 0 0 0
6 256 # IVcurve_reference.table[23, 1]
0 0 0 0
6 256 # IVcurve_reference.table[23, 2]
0 0 0 0
6 256 # IVcurve_reference.table[24, 1]
0 0 0 0
6 256 # IVcurve_reference.table[24, 2]
0 0 0 0
6 256 # IVcurve_reference.table[25, 1]
0 0 0 0
6 256 # IVcurve_reference.table[25, 2]
-1 0 0 0
1 280 # IVcurve_reference.offset
-1 0 0 0
1 280 # IVcurve_reference.startTime
0 1 1.0000000000000001E-015 1.0000000000000000E+100
6 256 # IVcurve_reference.timeScale
0 0 0 0
6 256 # IVcurve_reference.y
0 0 0 0
6 1344 # IVcurve_reference.a
0 0 0 0
6 1344 # IVcurve_reference.b
0 1 0 0
6 1346 # IVcurve_reference.last
0 0 0 0
6 1352 # IVcurve_reference.nextEvent
0 0 0 0
6 1344 # IVcurve_reference.nextEventScaled
0 0 0 0
6 1280 # IVcurve_reference.timeScaled
-1 12 0 0
1 280 # constV.k
0 0 0 0
6 256 # increasVoltage.height
0 2 0 1.0000000000000000E+100
6 256 # increasVoltage.duration
-1 0 0 0
1 280 # increasVoltage.offset
-1 0 0 0
1 280 # increasVoltage.startTime
-1 3 1 1.0000000000000000E+100
1 282 # ISum.significantDigits
0 2 0 1.0000000000000000E+100
6 770 # ISum.nu
0 0 0 0
6 256 # ISum.y
-1 1 0 0
1 280 # ISum.k[1]
-1 -1 0 0
1 280 # ISum.k[2]
0 0 0 0
6 256 # Idiff_sq.y
0 0 0 0
6 256 # sqrt1.y
-1 1 0 0
1 280 # Idiff_sum.k
0 3 1 4
6 258 # Idiff_sum.initType
-1 0 0 0
1 280 # Idiff_sum.y_start
-1 0 0 0
2 272 # Idiff_sum.y
0 0 0 0
3 256 # Idiff_sum.der(y)
# Matrix with 6 columns defining the initial value calculation
# (columns 5 and 6 are not utilized for the calculation but are
# reported by dymosim via dymosim -i for user convenience):
#
# column 1: Type of initial value
# = -2: special case: for continuing simulation (column 2 = value)
# = -1: fixed value (column 2 = fixed value)
# = 0: free value, i.e., no restriction (column 2 = initial value)
# > 0: desired value (column 1 = weight for optimization
# column 2 = desired value)
# use weight=1, since automatic scaling usually
# leads to equally weighted terms
# column 2: fixed, free or desired value according to column 1.
# column 3: Minimum value (ignored, if Minimum >= Maximum).
# column 4: Maximum value (ignored, if Minimum >= Maximum).
# Minimum and maximum restrict the search range in initial
# value calculation. They might also be used for scaling.
# column 5: Category of variable.
# = 1: parameter.
# = 2: state.
# = 3: state derivative.
# = 4: output.
# = 5: input.
# = 6: auxiliary variable.
# column 6: Data type of variable and flags according to dsBaseType
# <value>&3= 0: real.
# <value>&3= 1: boolean.
# <value>&3= 2: integer.
#
# Initial values are calculated according to the following procedure:
#
# - If parameters, states and inputs are FIXED, and other variables
# are FREE, no special action takes place (default setting).
#
# - If there are only FIXED and FREE variables and the number of
# FREE parameters, states and inputs is IDENTICAL to the number of
# FIXED state derivatives, outputs and auxiliary variables, a non-linear
# equation is solved to determine a consistent set of initial conditions.
#
# - In all other cases the following optimization problem is solved:
# min( sum( weight(i)*( (value(i) - DESIRED(i))/scale(i) )^2 ) )
# under the constraint that the differential equation is fulfilled
# at the initial time. In most cases weight(i)=1 is sufficient, due
# to the automatic scaling (if DESIRED(i) is not close to zero,
# scale(i) = DESIRED(i). Otherwise, the scaling is based on the
# nominal value (and maybe minimum and maximum values given in
# column 3 and 4). If these values are zero, scale(i)=1 is used).
#
char initialDescription(193,111)
1st coefficient IPho [m2/V]
2nd coefficient IPho [m2/(kV.K)]
1st coefficient ISat1 [A/K3]
2nd coefficient ISat2 [A/(K5)]
Band gap [eV]
PV module height [m]
Short circuit current under standard conditions [A]
Number of serial connected cells within the PV module [:#(type=Integer)]
Number of parallel connected cells within the PV module [:#(type=Integer)]
Module power under standard conditions [W]
Serial resistance [Ohm]
Parallel resistance [Ohm]
Temperature coefficient for the short circuit current in mA/K
Temperature coefficient for the open circuit voltage in V/K
Open circuit voltage under standard conditions [V]
Module width [m]
Number of parallel connected modules within one common orientation [:#(type=Integer)]
Number of serial connected modules within one common orientation [:#(type=Integer)]
= true, use input for controlling the tilt angle of the PV module [:#(type=Boolean)]
Tilt angle of the PV module [deg|deg]
Tilt angle of the PV module [deg|deg]
= true, use input for controlling the azimuth angle of the PV module [:#(type=Boolean)]
Azimuth angle of the PV module: South=0 deg West=90 deg East=-90 deg [deg|deg]
Azimuth angle of the PV module: South=0 deg West=90 deg East=-90 deg [deg|deg]
= true, use input for geometric shading coefficient GSC [:#(type=Boolean)]
Constant shading coefficient (if use_GSC_in = true)
Environment air temperature [K|degC]
Efficiency of the PV Module
Power of the PV field [W|W]
Current of the PV field [A]
Area of the PV field [m2]
Shading coefficient
Azimuth angle of the PV module: South=0 deg West=90 deg East=-90 deg
Tilt angle of the PV module
Geometrical shading coefficient
Reduced total solar radiation on module plane inclusive shading effects. [W/m2|W/m2]
Number of parallel connected cells within the PV module [:#(type=Integer)]
Number of serial connected cells within the PV module [:#(type=Integer)]
Band gap [eV]
Cell temperature [K|degC]
Module power [W|W]
Module current [A]
Temperature voltage [V]
Elementary charge [A.s]
Boltzmann constant [J/K]
1st coefficient IPho [m2/V]
2nd coefficient IPho [m2/(kV.K)]
1st coefficient ISat1 [A/K3]
2nd coefficient ISat2 [A/K5]
Parallel resistance [V/A]
Serial resistance [V/A]
Photo current [A]
Saturation current diode 1 [A]
Saturation current diode 2 [A]
Module voltage [V]
Empirical temperature factor [K.m2/W]
Gain value multiplied with input signal [1]
Gain value multiplied with input signal [1]
Module voltage [V]
Gain value multiplied with input signal [1]
Cell temperature during measurement [K|degC]
Effective total solar irradiation on solar cell [W/m2]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Discrete voltage values of the characteristic curve, from 0 to U10 and corresponding current [A]
Constant area specific direct solar radiation [W/m2]
Conatant area specific diffuse solar radiation [W/m2]
Constant incident angle of the direct solar radiation [deg]
Constant output value
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Table matrix (time = first column; e.g., table=[0, 0; 1, 1; 2, 4])
Offset of output signal
Output = offset for time < startTime [s]
Time scale of first table column [s]
Connector of Real output signal
Interpolation coefficients a of actual interval (y=a*x+b)
Interpolation coefficients b of actual interval (y=a*x+b)
Last used lower grid index [:#(type=Integer)]
Next event instant [s]
Next scaled event instant
Scaled time
Constant output value
Height of ramps
Duration of ramp (= 0.0 gives a Step) [s]
Offset of output signal
Output = offset for time < startTime [s]
Number of significant digits to be shown in dynamic diagram layer for y [:#(type=Integer)]
Number of input connections [:#(type=Integer)]
Input gains
Input gains
Connector of Real output signal
Connector of Real output signal
Integrator gain [1]
Type of initialization (1: no init, 2: steady state, 3,4: initial output) [:#(type=Modelica.Blocks.Types.Init)]
Initial or guess value of output (= state)
Connector of Real output signal
der(Connector of Real output signal)