-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathdemo_helper.py
59 lines (50 loc) · 2.26 KB
/
demo_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
from scipy.io.arff import loadarff
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
import os
path_to_current_file = os.path.dirname(os.path.abspath(__file__))
def viz_classification_preds(probs, y_test):
'''look at prediction breakdown
'''
plt.subplot(121)
plt.hist(probs[:, 1][y_test == 0], label='Class 0')
plt.hist(probs[:, 1][y_test == 1], label='Class 1', alpha=0.8)
plt.ylabel('Count')
plt.xlabel('Predicted probability of class 1')
plt.legend()
plt.subplot(122)
preds = np.argmax(probs, axis=1)
plt.title('ROC curve')
fpr, tpr, thresholds = metrics.roc_curve(y_test, preds)
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.plot(fpr, tpr)
plt.tight_layout()
plt.show()
def get_ames_data():
try:
housing = fetch_openml(name="house_prices", as_frame=True, parser='auto')
except:
housing = fetch_openml(name="house_prices", as_frame=True)
housing_target = housing['target'].values
housing_data_numeric = housing['data'].select_dtypes('number').drop(columns=['Id']).dropna(axis=1)
feature_names = housing_data_numeric.columns.values
X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(
housing_data_numeric.values, housing_target, test_size=0.75)
return X_train_reg, X_test_reg, y_train_reg, y_test_reg, feature_names
def get_diabetes_data():
'''load (classification) data on diabetes
'''
data = loadarff(os.path.join(path_to_current_file, "../tests/test_data/diabetes.arff"))
data_np = np.array(list(map(lambda x: np.array(list(x)), data[0])))
X = data_np[:, :-1].astype('float32')
y_text = data_np[:, -1].astype('str')
y = (y_text == 'tested_positive').astype(int) # labels 0-1
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.75) # split
feature_names = ["#Pregnant", "Glucose concentration test", "Blood pressure(mmHg)",
"Triceps skin fold thickness(mm)",
"2-Hour serum insulin (mu U/ml)", "Body mass index", "Diabetes pedigree function", "Age (years)"]
return X_train, X_test, y_train, y_test, feature_names