Create and update the SplineOmics object =====
+Create a SplineOmics object
create_splineomics.Rd
diff --git a/DESCRIPTION b/DESCRIPTION
index bc210ed..2c09d15 100755
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -8,6 +8,7 @@ Maintainer: Thomas Rauter
After we obtained the limma spline results, we can cluster the hits based on their temporal pattern (their spline shape). We define what a -hit is by setting an adj. p-value threshold for every level. Then, -hierarchical clustering is used to place every hit in one of as many +hit is by setting an adj. p-value threshold for every level. Hits are +features (e.g. proteins) that have an adj. p-value below the threshold. +Hierarchical clustering is used to place every hit in one of as many clusters as we have specified for that specific level.
-adj_pthresholds <- c(
- 0.05,
- 0.05
+adj_pthresholds <- c( # 0.05 for both levels
+ 0.05, # exponential
+ 0.05 # stationary
)
clusters <- c(
- 6L,
- 3L
+ 6L, # 6 clusters for the exponential phase level
+ 3L # 3 clusters for the stationary phase level
)
report_dir <- here::here(
@@ -646,19 +816,26 @@ Cluster the hits (significant fea
"clustering_reports"
)
-plot_info = list(
+plot_info = list( # For the spline plots
y_axis_label = "log2 intensity",
- time_unit = "min",
- treatment_labels = c("Feeding"),
- treatment_timepoints = c(0)
+ time_unit = "min", # our measurements were in minutes
+ treatment_labels = c("Feeding"),
+ treatment_timepoints = c(0) # Feeding was at 0 minutes.
)
+# Get all the gene names. They are used for generating files
+# which contents can be directly used as the input for the Enrichr webtool,
+# if you prefer to manually perform the enrichment. Those files are
+# embedded in the output HTML report and can be downloaded from there.
gene_column_name <- "Gene_symbol"
genes <- data_excel[[gene_column_name]][4:nrow(data_excel)]
-clustering_results <- cluster_hits(
+clustering_results <- SplineOmics::cluster_hits(
splineomics = splineomics,
- analysis_type = "time_effect",
+ # Cluster the hits from the time_effect results. You can also cluster
+ # the hits from the other two limma result categories by specifying
+ # it here with this argument.
+ analysis_type = "time_effect",
adj_pthresholds = adj_pthresholds,
clusters = clusters,
genes = genes,
@@ -666,16 +843,18 @@ Cluster the hits (significant fea
report_dir = report_dir,
)
You can view the generated analysis report of the cluster_hits -function here.
+function here.To each clustered hit, the respective gene can be assigned and GSEA +
Usually, the final step in such a bioinformatics analysis is GSEA. To +each clustered hit, the respective gene can be assigned and GSEA performed. For this, the Enrichr databases of choice have to be downloaded:
-gene_set_lib <- c(
+# Specify which databases you want to download from Enrichr
+gene_set_lib <- c(
"WikiPathways_2019_Human",
"NCI-Nature_2016",
"TRRUST_Transcription_Factors_2019",
@@ -690,7 +869,7 @@ Perform gene set enrichment a
"Human_Gene_Atlas"
)
-download_enrichr_databases(gene_set_lib)
Per default the file is placed in the current working directory, which is the root dir of the R project.
To run GSEA, the downloaded database file has to be loaded as a @@ -699,14 +878,18 @@
-downloaded_dbs_filepath <-
+# Specify the filepath of the TSV file with the database info
+downloaded_dbs_filepath <-
here::here("all_databases_08_04_2024-12_41_50.tsv")
-databases <- readr::read_tsv(
+# Load the file
+databases <- read.delim(
downloaded_dbs_filepath,
- col_types = readr::cols()
- )
+ sep = "\t",
+ stringsAsFactors = FALSE
+)
+# Specify the clusterProfiler parameters
clusterProfiler_params <- list(
adj_p_value = 0.05,
pAdjustMethod = "BH",
@@ -718,26 +901,60 @@ Perform gene set enrichment a
report_dir <- here::here(
"results",
"gsea_reports"
- )
-
-result <- create_gsea_report(
+ )
The function below runs the clusterProfiler for all clusters and all +levels, and generates the HTML report:
+
+result <- SplineOmics::run_gsea(
+ # A dataframe with three columns: feature, cluster, and gene. Feature contains
+ # the integer index of the feature, cluster the integer specifying the cluster
+ # number, and gene the string of the gene, such as "CLSTN2".
levels_clustered_hits = clustering_results$clustered_hits_levels,
databases = databases,
- params = clusterProfiler_params,
+ clusterProfiler_params = clusterProfiler_params,
report_info = report_info,
report_dir = report_dir
)
You can view the generated analysis report of the cluster_hits -function here.
-Every row in the dotplots is a term from a specific database, and the -columns are the respective clusters. The color scale contains the info -about the odds ratio and the size the -log10 adj. p-value. Only terms -that have > 2 genes as support are included in the plot. Further, for -each cluster, just maximally 5 terms are shown (the terms with the -highest odds ratios). Note that when for example cluster 1 already has 5 -terms, and cluster 2 does not, and gets a term which was also found for -cluster 1, than this term would be included as the sixth term for -cluster 1, so this is a way the maximum of 5 can be exceeded.
+function here. +This report first shows all enrichment results, where more than 2 +genes supported a term, in a tabular format. The table with all the +terms with < 2 genes supporting it can be downloaded by clicking on a +button below that table.
+For the dotplots below that, every row is a term from a specific +database, and the columns are the respective clusters. The color scale +contains the info about the odds ratio and the size the -log10 adj. +p-value. Only terms that have > 2 genes as support are included in +the plot. Further, for each cluster, just maximally 5 terms are shown +(the terms with the highest odds ratios). Note that when for example +cluster 1 already has 5 terms, and cluster 2 does not, and gets a term +which was also found for cluster 1, than this term would be included as +the sixth term for cluster 1, so this is a way the maximum of 5 can be +exceeded.
+If a phase, like stationary here, does not lead to any enrichment +results, that is stated with a red message.
+ +This example showed most functionalities of the SplineOmics package. +You can also run other datatypes with it, including timeseries RNA-seq +and glycan data (for those, refer to the documentation in the README +file on the GitHub page under Usage/RNA-seq and Glycan Data).
+To get an interactive version of this example, download the
+SplineOmics package and run the function open_tutorial()
+which opens an R Markdown file, where you can run the different code
+blocks and if your are working in R Studio (which is recommendet) you
+can easily check out the values of the individual variables and generate
+the output reports yourself.
When you run the function open_template()
you get a
+minimal R Markdown file, where the code is written so that you can use
+it as a skeleton to plug in your own data and run it.
We hope that the SplineOmics package makes your scientific data +analysis easier. If you face any problems (bugs in the code) or are not +satisfied with the documentation, open an issue on GitHub or check out +the other options under the Feedback section of the README on GitHub. +Thank you!
Rauter T (2024). SplineOmics: Streamlines the process of analysing omics timeseries data with splines. -R package version 0.1.0. +R package version 0.1.0, https://csbg.github.io/SplineOmics.
@Manual{, title = {SplineOmics: Streamlines the process of analysing omics timeseries data with splines}, author = {Thomas Rauter}, year = {2024}, note = {R package version 0.1.0}, + url = {https://csbg.github.io/SplineOmics}, }diff --git a/docs/index.html b/docs/index.html index b6fc033..db4f41b 100755 --- a/docs/index.html +++ b/docs/index.html @@ -66,8 +66,9 @@
The R package SplineOmics
finds the significant features (hits) of time-series -omics data by using splines and limma
for hypothesis testing. It then clusters the hits based on the spline shape while showing all results in summary HTML reports.
The graphical abstract below shows the full workflow streamlined by SplineOmics
:
The explore_data()
function generates an HTML report, containing various plots, such as density, PCA, and correlation heatmap plots (example report).
Explore various limma splines hyperparameters:
-Test combinations of hyperparameters, such as different datasets, limma
design formulas, degrees of freedom, p-value thresholds, etc., using the screen_limma_hyperparams()
function (example report (along with the encoding)
Test combinations of hyperparameters, such as different datasets, limma
design formulas, degrees of freedom, p-value thresholds, etc., using the screen_limma_hyperparams()
function (example report (along with the encoding)).
Perform limma spline analysis:
-Use the run_limma_splines()
function to perform the limma
analysis with splines once the optimal hyperparameters are identified (example report).
Use the run_limma_splines()
function to perform the limma
analysis with splines once the optimal hyperparameters are identified (example report).
Cluster significant features:
-Cluster the significant features (hits) identified in the spline analysis with the cluster_hits()
function (example report).
Cluster the significant features (hits) identified in the spline analysis with the cluster_hits()
function (example report).
Run GSEA with clustered hits:
-Perform gene set enrichment analysis (GSEA) using the clustered hits with the create_gsea_report()
function (example report).
Perform gene set enrichment analysis (GSEA) using the clustered hits with the create_gsea_report()
function (example report).
-library(SplineOmics)
library(SplineOmics)
Alternatively, you can run your analysis in a Docker
container. The underlying Docker
image encapsulates the SplineOmics
package together with the necessary environment and dependencies. This ensures higher levels of reproducibility because the analysis is carried out in a consistent environment, independent of the operating system and its custom configurations.
More information about Docker
containers can be found on the official Docker page.
For instructions on downloading the image of the SplineOmics
package and running the container, please refer to the Docker instructions.
For instructions on downloading the image of the SplineOmics
package and running the container, please refer to the Docker instructions.
This tutorial covers a real CHO cell time-series proteomics example from start to end.
+This tutorial covers a real CHO cell time-series proteomics example from start to end.
To open an R Markdown file of the tutorial in RStudio
, run:
-library(SplineOmics)
+library(SplineOmics)
open_tutorial()
To open an R Markdown file in RStudio
containing a template for your own analysis, run:
-library(SplineOmics)
+library(SplineOmics)
open_template()
A detailed description of all arguments and outputs of all the functions in the package (exported and internal functions) can be found here.
+A detailed description of all arguments and outputs of all the functions in the package (exported and internal functions) can be found here.
limma
design formula
A quick guide on how to design a limma
design formula can be found here
An (PDF) explanation of the three different limma
results can be downloaded here
A quick guide on how to design a limma
design formula can be found here
An explanation of the three different limma
results is here
Transcriptomics data must be preprocessed for limma
. This is done by setting the preprocess_rna_seq argument to TRUE (see documentation of create_splineomics() function). Then, the raw RNA-seq counts provided in the data matrix will undergo normalization and transformation. The default normalization is performed using TMM (Trimmed Mean of M-values) normalization via the edgeR
::calcNormFactors function, followed by the voom transformation from the limma
package to obtain log-transformed counts per million (logCPM) with associated precision weights. If you require a different normalization method, you can supply your custom normalization function.
Transcriptomics data must be preprocessed for limma
. You need to provide an appropriate object, such as a voom
object, in the rna_seq_data
argument of the SplineOmics
object (see documentation). Along with this, the normalized matrix (e.g., the $E
slot of the voom
object) must be passed to the data
argument. This allows flexibility in preprocessing; you can use any method you prefer as long as the final object and matrix are compatible with limma. One way to preprocess your RNA-seq data is by using the preprocess_rna_seq_data()
function included in the SplineOmics
package (see documentation).
No return value, called for side effects.
-Check Columns in Spline Test Configurations
between_level(
data,
- preprocess_rna_seq,
- normalization_fun,
+ rna_seq_data,
meta,
design,
spline_params,
@@ -69,12 +68,9 @@ Argumentspreprocess_rna_seq
-Boolean specifying whether to preprocess RNA seq
-
-
-normalization_fun
-Function for normalizing RNA-seq raw-counts.
+rna_seq_data
+An object containing the preprocessed RNA-seq data,
+such as the output from `limma::voom` or a similar preprocessing pipeline.
meta
diff --git a/docs/reference/create_p_value_histogram.html b/docs/reference/create_p_value_histogram.html
index 06ef625..679085f 100644
--- a/docs/reference/create_p_value_histogram.html
+++ b/docs/reference/create_p_value_histogram.html
@@ -49,7 +49,7 @@ Create a p-value histogram from a limma top_table
Usage
create_p_value_histogram(
top_table,
- adj_pthresh = 0.05,
+ pthresh = 0.05,
title = "P-Value Histogram"
)
A numeric value for the adjusted p-value threshold (not used in this function, included for consistency).
create_splineomics.Rd
The actual omics data.
The actual omics data. In the case the rna_seq_data argument is +used, still provide this argument. In that case, input the data matrix in +here (for example the $E part of the voom object). Assign your feature names +as row headers (otherwise, just numbers will be your feature names).
An object containing the preprocessed RNA-seq data, +such as the output from `limma::voom` or a similar preprocessing pipeline. +This argument is not controlled by any function of the `SplineOmics` package. +Rather, in that regard it relies on the input control from the `limma::lmfit` +function.
A dataframe with the feature descriptions of data (optional).
Parameters for spline functions (optional).
Boolean specifying whether to preprocess RNA seq
Function used for normalizing RNA-seq. Must take as -input the y of: y <- edgeR::DGEList(counts = raw_counts) and output the y -with the normalized counts.
Parameters for spline functions (optional). Must contain +the named elements spline_type, which must contain either the string "n" for +natural cubic splines, or "b", for B-splines, the named element degree in the +case of B-splines, that must contain only an integer, and the named element +dof, specifying the degree of freedom, containing an integer and required +both for natural and B-splines.
A SplineOmics object.
-Description -———– -Contains the functions to create and update a SplineOmics object. This object -is used to collect function arguments, that are equivalent for more than one -exported function of the SplineOmics package. Additionally
-Functions -——— -- create_splineomics: Create a SplineOmics object -- update_splineomics: Add additional arguments to the SplineOmics -object or overwrite existing arguments.
-Classes -——- -None
-Notes -—– -None -Create a SplineOmics object
-get_limma_combos_results(
datas,
+ rna_seq_datas,
metas,
designs,
modes,
@@ -68,6 +69,11 @@ Argumentsrna_seq_datas
+A list of RNA-seq data objects, such as the voom object
+derived from the limma::voom function.
+
+
metas
A list of metadata corresponding to the data matrices.
diff --git a/docs/reference/index.html b/docs/reference/index.html
index d50445e..9dc5c9d 100644
--- a/docs/reference/index.html
+++ b/docs/reference/index.html
@@ -244,7 +244,7 @@ All functionscreate_splineomics()
-
create_toc()
@@ -754,7 +754,7 @@ screen_limma_hyperparams()
diff --git a/docs/reference/preprocess_rna_seq_data.html b/docs/reference/preprocess_rna_seq_data.html
index ef03be6..33bf1c6 100644
--- a/docs/reference/preprocess_rna_seq_data.html
+++ b/docs/reference/preprocess_rna_seq_data.html
@@ -1,11 +1,19 @@
-This function is called when `preprocess_rna_seq` is `TRUE`. It performs the -default preprocessing steps for raw RNA-seq counts, including creating a -`DGEList` object, normalizing the counts, and applying the `voom` -transformation.
+The `preprocess_rna_seq_data()` function performs essential preprocessing +steps for raw RNA-seq counts. This includes creating a `DGEList` object, +normalizing the counts using the default TMM (Trimmed Mean of M-values) +normalization via the `edgeR::calcNormFactors` function, and applying the +`voom` transformation from the `limma` package to obtain log-transformed +counts per million (logCPM) with associated precision weights. If you +require a different normalization method, you can supply your own +custom normalization function.
preprocess_rna_seq_data(raw_counts, design_matrix, normalize_func = NULL)
preprocess_rna_seq_data(
+ raw_counts,
+ meta,
+ spline_params,
+ design,
+ normalize_func = NULL
+)
A design matrix used in the linear modeling, typically -specifying the experimental conditions.
A dataframe containing the metadata for data.
Parameters for spline functions (optional). Must contain +the named elements spline_type, which must contain either the string "n" for +natural cubic splines, or "b", for B-splines, the named element degree in the +case of B-splines, that must contain only an integer, and the named element +dof, specifying the degree of freedom, containing an integer and required +both for natural and B-splines.
A design formula for the limma analysis, such as +'~ 1 + Phase*X + Reactor'.
An optional normalization function. If provided, this function will be used to normalize the `DGEList` object. If not provided, - TMM normalization (via `edgeR::calcNormFactors`) will be used by default.
A list of RNA-seq data objects, such as the voom object +derived from the limma::voom function.
A list of metadata corresponding to the data matrices.
List of lists containing the limma -topTable, fit, and optionally the voom -object. All of this is from one specific -level.
process_within_level(
data,
- preprocess_rna_seq,
- normalization_fun,
+ rna_seq_data,
meta,
design,
spline_params,
@@ -70,12 +69,9 @@ Argumentspreprocess_rna_seq
-Boolean specifying whether to preprocess RNA seq
-
-
-normalization_fun
-Function for normalizing RNA-seq raw counts.
+rna_seq_data
+An object containing the preprocessed RNA-seq data,
+such as the output from `limma::voom` or a similar preprocessing pipeline.
meta
diff --git a/docs/reference/run_limma_splines.html b/docs/reference/run_limma_splines.html
index 3ce7ffa..5f39f5d 100644
--- a/docs/reference/run_limma_splines.html
+++ b/docs/reference/run_limma_splines.html
@@ -1,21 +1,13 @@
-run_limma_splines.R contains the exported package function run_limma_splines and all the functions that make up the functionality of run_limma_splines. run_limma_splines performs a limma analysis, using splines, to assign a p-value to every feature of a time series omics dataset, to find out which features are significantly changed over the time course. Run Limma Analysis with Spline Interpolation for Hyperparameter Screening — run_limma_splines • SplineOmics
+Run limma analysis with splines — run_limma_splines • SplineOmics
Skip to contents
@@ -49,21 +41,17 @@
- run_limma_splines.R contains the exported package function run_limma_splines and all the functions that make up the functionality of run_limma_splines. run_limma_splines performs a limma analysis, using splines, to assign a p-value to every feature of a time series omics dataset, to find out which features are significantly changed over the time course. Run Limma Analysis with Spline Interpolation for Hyperparameter Screening
+ Run limma analysis with splines
run_limma_splines.Rd
- This function conducts differential expression analysis using the Limma
-package,
-incorporating spline interpolation to model the effect of various
-experimental
-factors across different levels. It supports both isolated and integrated
-modes
-for within-level analysis and between-level comparison, adjusting for
-multiple
-degrees of freedom corresponding to the factors under investigation.
+ This function performs a limma spline analysis to identify significant
+time-dependent changes in features (e.g., proteins) within an omics
+time-series dataset. It evaluates features within each condition level
+and between levels by comparing average differences and interactions
+between time and condition.
@@ -76,8 +64,28 @@ Argumentssplineomics
-A SplineOmics object, containing data, meta, design,
-condition, and spline_params.
+An S3 object of class `SplineOmics` that contains the
+following elements:
data
: The matrix of the omics dataset, with the feature
+ names optionally as row headers.
+rna_seq_data
: An object containing the preprocessed
+ RNA-seq data,
+ such as the output from `limma::voom` or a similar preprocessing pipeline.
+meta
: A dataframe containing metadata corresponding to the
+ data
, must include a 'Time' column and the column specified by
+ condition
.
+design
: A character string representing the limma design
+ formula.
+condition
: A character string specifying the column name
+ in meta
used to define groups for analysis.
+spline_params
: A list of spline parameters used in the
+ analysis, including:
spline_type
: The type of spline (e.g., "n" for natural
+ splines or "b" for B-splines).
+dof
: Degrees of freedom for the spline.
+knots
: Positions of the internal knots (for B-splines).
+bknots
: Boundary knots (for B-splines).
+degree
: Degree of the spline (for B-splines only).
+
+
diff --git a/docs/reference/screen_limma_hyperparams.html b/docs/reference/screen_limma_hyperparams.html
index 6414639..9d640e5 100644
--- a/docs/reference/screen_limma_hyperparams.html
+++ b/docs/reference/screen_limma_hyperparams.html
@@ -71,6 +71,7 @@ Usage
spline_test_configs,
report_dir = here::here(),
adj_pthresholds = c(0.05),
+ rna_seq_datas = NULL,
time_unit = "min",
padjust_method = "BH"
)
@@ -98,7 +99,7 @@ Argumentsdatas
-A list of data frames containing the datasets to be analyzed.
+A list of matrices containing the datasets to be analyzed.
datas_descr
@@ -127,6 +128,11 @@ Argumentsrna_seq_datas
+A list of RNA-seq data objects, such as the voom object
+derived from the limma::voom function.
+
+
time_unit
A character string specifying the time unit label for plots.
diff --git a/docs/reference/within_level.html b/docs/reference/within_level.html
index 5ddbd38..aa728d9 100644
--- a/docs/reference/within_level.html
+++ b/docs/reference/within_level.html
@@ -1,6 +1,6 @@
-Within level analysis — within_level • SplineOmics Within level analysis — within_level • SplineOmics
Skip to contents
@@ -41,7 +41,7 @@ Within level analysis
- Processes a single level within a condition, performing LIMMA analysis
+
Processes a single level within a condition, performing limma analysis
and generating the top table of results.
@@ -52,8 +52,7 @@ Usage
level_index,
spline_params,
data,
- preprocess_rna_seq,
- normalization_fun,
+ rna_seq_data,
meta,
design,
condition,
@@ -83,20 +82,17 @@ Argumentspreprocess_rna_seq
-Boolean specifying whether to preprocess RNA seq
-
-
-normalization_fun
-Function to normalize RNA-seq raw counts.
+rna_seq_data
+An object containing the preprocessed RNA-seq data,
+such as the output from `limma::voom` or a similar preprocessing pipeline.
meta
-A dataframe containing metadata.
+A dataframe containing the metadata for data.
design
-A design formula or matrix for the LIMMA analysis.
+A design formula or matrix for the limma analysis.
condition
diff --git a/docs/search.json b/docs/search.json
index 46864cd..9573985 100644
--- a/docs/search.json
+++ b/docs/search.json
@@ -1 +1 @@
-[{"path":[]},{"path":"/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement thomas.rauter@plus.ac.. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.0, available https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. Community Impact Guidelines inspired Mozilla’s code conduct enforcement ladder. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"/articles/Docker-instructions.html","id":"pulling-the-docker-container","dir":"Articles","previous_headings":"","what":"Pulling the Docker Container","title":"Docker-instructions","text":"Pull Docker container: face ‘permission denied’ issues, check vignette","code":"# Docker Hub repo still private, will make it public then docker pull thomasrauter/splineomics:0.1.0"},{"path":"/articles/Docker-instructions.html","id":"running-the-docker-container","dir":"Articles","previous_headings":"","what":"Running the Docker Container","title":"Docker-instructions","text":"run Docker container, can use one following commands, depending operating System. respective command needs run folder subfolders input output exist. Place data meta (annotation) files input, receive output container output folder. Linux macOS: Windows: container running, open web browser navigate http://localhost:8888. Use rstudio username password set -e PASSWORD=123 option. long container running, can work localhost page RStudio, also SplineOmics package installed. /home/rstudio/ R session working folder. Direct generated results /home/rstudio/output, mounted local folder output. results . Stop container: Start container :","code":"# Bash docker run -it -d \\ -v $(pwd)/input:/home/rstudio/input \\ -v $(pwd)/output:/home/rstudio/output \\ -p 8888:8787 \\ -e PASSWORD=123 \\ --name splineomics \\ thomasrauter/splineomics:0.1.0 # PowerShell docker run -it -d ` -v \"${PWD}\\input:/home/rstudio/input\" ` -v \"${PWD}\\output:/home/rstudio/output\" ` -p 8888:8787 ` -e PASSWORD=123 ` --name splineomics ` thomasrauter/splineomics:0.1.0 docker stop splineomics docker start splineomics"},{"path":"/articles/Docker-instructions.html","id":"inspect-docker-container-installations","dir":"Articles","previous_headings":"","what":"Inspect Docker container installations","title":"Docker-instructions","text":"see R packages system installations make Docker container, can run following command terminal RStudio localhost browser page. /home/rstudio/output dir mounted local filesystem, make installation log files available .","code":"cp -r /log home/rstudio/output"},{"path":"/articles/design_limma_design_formula.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Designing a Limma Design Formula","text":"limma package powerful tool analyzing gene expression data, particularly context microarrays RNA-seq. critical part limma analysis design formula, specifies experimental conditions contrasts interested . vignette provides guide construct limma design formula correctly, examples best practices.","code":""},{"path":"/articles/design_limma_design_formula.html","id":"understanding-the-design-matrix","dir":"Articles","previous_headings":"","what":"Understanding the Design Matrix","title":"Designing a Limma Design Formula","text":"design matrix crucial component differential expression analysis using limma. defines relationships samples experimental conditions (factors) investigation. well-constructed design matrix allows limma correctly model effects factors estimate differential expression.","code":""},{"path":"/articles/design_limma_design_formula.html","id":"basic-design-formula","dir":"Articles","previous_headings":"Understanding the Design Matrix","what":"Basic Design Formula","title":"Designing a Limma Design Formula","text":"simplest form, design formula includes one factor, treatment vs. control. experiment involves comparing two conditions (e.g., treated vs. untreated), can create design formula like : , condition factor variable metadata (meta) represents experimental groups. Important Points: ~ 0 + condition syntax tells R create design matrix without intercept (.e., matrix level factor condition represented column). approach helpful want make direct comparisons conditions. Including Multiple Factors experiment includes one factor, time points treatments, can include design formula: formula assumes effects treatment time additive (interaction). suspect interaction treatment time might important, can include interaction term: Interaction Term: treatment * time term includes main effects treatment time interaction. Blocking Factors experiments, might technical biological replicates, blocking factors (e.g., batch effects). can include blocking factors design formula: formula accounts treatment batch effects, ensuring analysis confounded batch effects.","code":"design <- model.matrix(~ 0 + condition, data = meta) design <- model.matrix(~ 0 + treatment + time, data = meta) design <- model.matrix(~ 0 + treatment * time, data = meta) design <- model.matrix(~ 0 + treatment + batch, data = meta)"},{"path":"/articles/design_limma_design_formula.html","id":"creating-contrasts","dir":"Articles","previous_headings":"","what":"Creating Contrasts","title":"Designing a Limma Design Formula","text":"defining design matrix, likely want make specific comparisons conditions. contrasts come . example, compare treated vs. untreated, can define contrast matrix:","code":"contrast <- makeContrasts( treated_vs_untreated = treatmenttreated - treatmentuntreated, levels = design )"},{"path":"/articles/design_limma_design_formula.html","id":"practical-example","dir":"Articles","previous_headings":"","what":"Practical Example","title":"Designing a Limma Design Formula","text":"Let’s say experiment two treatments (B) two time points (early late). metadata might look like : design formula : contrast compare treatment early time point treatment B late time point :","code":"meta <- data.frame( sample = c(\"S1\", \"S2\", \"S3\", \"S4\"), treatment = factor(c(\"A\", \"A\", \"B\", \"B\")), time = factor(c(\"early\", \"late\", \"early\", \"late\")) ) design <- model.matrix(~ 0 + treatment * time, data = meta) contrast <- makeContrasts( A_early_vs_B_late = (treatmentA:timeearly) - (treatmentB:timelate), levels = design )"},{"path":"/articles/design_limma_design_formula.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Designing a Limma Design Formula","text":"Starting ~ 0 means intercept (.e., including baseline group model). Starting ~ 1 (just ~) includes intercept (baseline group). Factors separated + indicate additive effects. example, ~ 0 + factor1 + factor2 means modeling effects factor1 factor2 additively, without considering interactions. * symbol used model interactions factors. example, ~ 0 + factor1 * factor2 include factor1, factor2, interaction (factor1:factor2). Alternatively, can specify interaction explicitly :. example, ~ 0 + factor1 + factor2 + factor1:factor2 equivalent ~ 0 + factor1 * factor2.","code":""},{"path":"/articles/design_limma_design_formula.html","id":"some-examples","dir":"Articles","previous_headings":"Summary","what":"Some examples:","title":"Designing a Limma Design Formula","text":"~ 0 + factor1 + factor2: Additive model without intercept. ~ 1 + factor1 + factor2: Additive model intercept. ~ 0 + factor1 * factor2: Model main effects interaction, intercept. ~ 1 + factor1 * factor2: Model intercept, main effects, interaction.","code":""},{"path":"/articles/get-started.html","id":"about-this-tutorial","dir":"Articles","previous_headings":"","what":"About this tutorial","title":"get-started","text":"tutorial intends showcase explain capabilities SplineOmics package walking real complete example, start finish.","code":""},{"path":"/articles/get-started.html","id":"example-overview","dir":"Articles","previous_headings":"About this tutorial","what":"Example Overview","title":"get-started","text":"example involves time-series proteomics experiment, CHO (chinese hamster ovary) cells cultivated three bioreactors (three biological replicates). experiment includes following setup: Samples taken exponential stationary growth phases. 60 minutes feeding 15, 60, 90, 120, 240 minutes feeding","code":""},{"path":"/articles/get-started.html","id":"analysis-goals","dir":"Articles","previous_headings":"About this tutorial","what":"Analysis Goals","title":"get-started","text":"main goals analysis : Identify proteins significant temporal changes: 7162 cellular proteins, objective detect proteins show significant change time CHO cells fed (.e., impact feeding). Cluster hits based temporal patterns: proteins (hits) significant temporal changes clustered according time-based patterns. Perform gene set enrichment analysis: cluster, gene set enrichment analysis performed determine specific biological processes - downregulated feeding.","code":""},{"path":"/articles/get-started.html","id":"load-the-packages","dir":"Articles","previous_headings":"","what":"Load the packages","title":"get-started","text":"","code":"library(SplineOmics) library(readxl)"},{"path":"/articles/get-started.html","id":"load-the-files","dir":"Articles","previous_headings":"","what":"Load the files","title":"get-started","text":"example, data.xlsx file contains numeric values (intensities) also feature descriptions, gene protein name (= annotation part) file meta.xlsx contains meta information, descriptions columns numeric values data. (example files part package don’t present system). Please note dataset actual experimental dataset, annotation information, gene names, removed since yet published. Instead, dataset includes randomly generated gene symbols gene names corresponding Cricetulus griseus (Chinese Hamster) row. intended demonstrate functionality package.","code":"data_excel <- readRDS(system.file( \"extdata\", \"proteomics_data.rds\", package = \"SplineOmics\" )) meta <- read_excel( system.file( \"extdata\", \"proteomics_meta.xlsx\", package = \"SplineOmics\" ) ) # Extract the annotation part from the dataframe. first_na_col <- which(is.na(data_excel[1,]))[1] annotation <- data_excel |> dplyr::select((first_na_col + 1):ncol(data_excel)) |> dplyr::slice(-c(1:3)) print(data_excel) #> # A tibble: 4,165 × 40 #> `Sample ID` `1` `2` `3` `4` `5` `6` `7` `8` `9` `10` `11` #> #> 1 Reactor E09 E10 E12 E09 E10 E12 E09 E10 E12 E09 E10 #> 2 Time Point TP01 TP01 TP01 TP02 TP02 TP02 TP03 TP03 TP03 TP04 TP04 #> 3 Phase of F… Expo… Expo… Expo… Expo… Expo… Expo… Expo… Expo… Expo… Expo… Expo… #> 4 NA 15.2… 15.2… 15.3… 15.1… 15.2… 15.0… 15.2… 15.2… 15.2… 15.1… 15.2… #> 5 NA 15.0… 15.1… 15.2… 15.1… 15.1… 15.2… 15.2… 15.3… 15.2… 15.1… 15.1… #> 6 NA 14.5… 14.7… 14.6… 14.5… 14.6… 14.6… 14.5… 14.6… 14.7… 14.5… 14.6… #> 7 NA 16.3… 16.4… 16.4… 16.4… 16.4… 16.4… 16.3… 16.3… 16.4… 16.4… 16.4… #> 8 NA 16.7… 16.7… 16.6… 16.7… 16.7… 16.7… 16.7… 16.7… 16.6… 16.6… 16.7… #> 9 NA 13.8… 13.7… 13.9… 13.9… 13.9… 13.9… 13.9… 13.9… 13.9… 13.9… 13.9… #> 10 NA 21.8… 21.7… 21.6… 21.8… 21.6… 21.5… 21.5… 21.6… 21.5… 21.6… 21.5… #> # ℹ 4,155 more rows #> # ℹ 28 more variables: `12` , `13` , `14` , `15` , #> # `16` , `17` , `18` , `19` , `20` , `21` , #> # `22` , `23` , `24` , `25` , `26` , `27` , #> # `28` , `29` , `30` , `31` , `32` , `33` , #> # `34` , `35` , `36` , ...38 , Gene_symbol , #> # Gene_name print(annotation) #> # A tibble: 4,162 × 2 #> Gene_symbol Gene_name #> #> 1 LOC113838844 cone-rod homeobox protein-like #> 2 Wdr83os WD repeat domain 83 opposite strand #> 3 Cubn cubilin #> 4 Dynlt1 dynein light chain Tctex-type 1 #> 5 Ostc oligosaccharyltransferase complex non-catalytic subunit #> 6 Unc5cl unc-5 family C-terminal like #> 7 Cfl1 cofilin 1 #> 8 LOC100752202 HEN methyltransferase 1 #> 9 LOC100755162 acyl-coenzyme A synthetase ACSM5, mitochondrial #> 10 LOC100768921 40S ribosomal protein S21 #> # ℹ 4,152 more rows print(meta) #> # A tibble: 36 × 5 #> Sample.ID Reactor Time.Point Phase Time #> #> 1 E09_TP01_Exponential E09 TP01 Exponential -60 #> 2 E10_TP01_Exponential E10 TP01 Exponential -60 #> 3 E12_TP01_Exponential E12 TP01 Exponential -60 #> 4 E09_TP02_Exponential E09 TP02 Exponential 15 #> 5 E10_TP02_Exponential E10 TP02 Exponential 15 #> 6 E12_TP02_Exponential E12 TP02 Exponential 15 #> 7 E09_TP03_Exponential E09 TP03 Exponential 60 #> 8 E10_TP03_Exponential E10 TP03 Exponential 60 #> 9 E12_TP03_Exponential E12 TP03 Exponential 60 #> 10 E09_TP04_Exponential E09 TP04 Exponential 90 #> # ℹ 26 more rows"},{"path":"/articles/get-started.html","id":"bring-the-inputs-into-the-standardized-format","dir":"Articles","previous_headings":"Load the files","what":"Bring the Inputs into the Standardized Format","title":"get-started","text":"Since data_excel format required SplineOmics package, needs processing. can done commands R, file specific structure, function extract_data() can handle automatically.","code":""},{"path":"/articles/get-started.html","id":"file-structure-requirements","dir":"Articles","previous_headings":"Load the files > Bring the Inputs into the Standardized Format","what":"File Structure Requirements","title":"get-started","text":"file looks like one used , : data matrix field left annotation info right fields separated one empty column , extract_data() can: Identify data matrix field convert dataframe. Create column headers information written cells respective columns data matrix field. annotation columns specified, rowheaders increasing numbers. annotation columns specified (like \"First.Protein.Description\" \"ID\" example), combined form rowheaders (feature names).","code":""},{"path":"/articles/get-started.html","id":"usage-in-plotting","dir":"Articles","previous_headings":"Load the files > Bring the Inputs into the Standardized Format","what":"Usage in Plotting","title":"get-started","text":"generated rowheaders used label plots feature shown individually, : Spline plots datapoints individual feature.","code":"data <- extract_data( data = data_excel, feature_name_columns = c(\"Gene_name\"), user_prompt = FALSE )"},{"path":"/articles/get-started.html","id":"perform-eda-exploratory-data-analysis","dir":"Articles","previous_headings":"","what":"Perform EDA (exploratory data analysis)","title":"get-started","text":"first step analyzing data typically Exploratory Data Analysis (EDA). EDA involves summarizing main characteristics data, often visualizations.","code":""},{"path":"/articles/get-started.html","id":"common-eda-plots","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Common EDA Plots","title":"get-started","text":"common types EDA plots include: Density distributions Boxplots PCA (Principal Component Analysis) Correlation heatmaps","code":""},{"path":"/articles/get-started.html","id":"using-explore_data-for-eda","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Using explore_data() for EDA","title":"get-started","text":"SplineOmics package provides function explore_data() perform EDA. function requires following arguments: data: data matrix. meta: metadata table. condition: name column metadata contains levels experiment (e.g., “Exponential” “Stationary”). report_info: list contains general information analysis.","code":""},{"path":"/articles/get-started.html","id":"optional-arguments","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Optional Arguments","title":"get-started","text":"addition required arguments, explore_data() offers several optional arguments: meta_batch_column: name column contains first batch effect. meta_batch2_column: name column contains second batch effect. least one batch column provided, function : Use removeBatchEffect() function limma remove batch effect data plotting. Generate two EDA HTML reports: one uncorrected data one batch-corrected data.","code":""},{"path":"/articles/get-started.html","id":"output-and-report-options","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Output and Report Options","title":"get-started","text":"default, reports saved current working directory, location can changed using report_dir argument. function also returns plots generated analysis. want report generated, can set report argument FALSE. can see HTML report explore_data() function batch-corrected data, report batch-corrected data. EDA plots can tell range things. plots HTML report grouped three categories: Distribution Variability Analysis, Time Series Analysis, Dimensionality Reduction Clustering. look correlation heatmaps HTML report, can see samples E12_TP05_Exponential E10_TP10_Stationary stick . Seeing , might want remove data. can test happens , along testing hyperparameter choices influence results, package function screen_limma_hyperparams().","code":"report_info <- list( omics_data_type = \"PTX\", data_description = \"Proteomics data of CHO cells\", data_collection_date = \"February 2024\", analyst_name = \"Thomas Rauter\", contact_info = \"thomas.rauter@plus.ac.at\", project_name = \"DGTX\" ) report_dir <- here::here( \"results\", \"explore_data\" ) splineomics <- create_splineomics( data = data, meta = meta, annotation = annotation, report_info = report_info, condition = \"Phase\", meta_batch_column = \"Reactor\" ) plots <- explore_data( splineomics = splineomics, report_dir = report_dir )"},{"path":"/articles/get-started.html","id":"finding-the-best-hyperparameters","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Finding the Best Hyperparameters","title":"get-started","text":"running limma spline analysis, important find best “hyperparameters”. context, hyperparameters include: Degree freedom (DoF) Different versions data (e.g., outlier removed vs. removed) Different limma design formulas","code":""},{"path":"/articles/get-started.html","id":"challenge-of-hyperparameter-selection","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > Finding the Best Hyperparameters","what":"Challenge of Hyperparameter Selection","title":"get-started","text":"Rationally determining best combination hyperparameters can challenging. Instead manually selecting combinations, often effective try multiple combinations choose best-performing one.","code":""},{"path":"/articles/get-started.html","id":"using-screen_limma_hyperparams","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > Finding the Best Hyperparameters","what":"Using screen_limma_hyperparams()","title":"get-started","text":"function screen_limma_hyperparams() automates process testing different combinations hyperparameters. ’s works: Specify values: hyperparameter, can specify values want test. Run combinations: function runs limma spline analysis combinations formed hyperparameters ’ve provided.","code":""},{"path":"/articles/get-started.html","id":"inner-vs--outer-hyperparameters","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > Finding the Best Hyperparameters","what":"Inner vs. Outer Hyperparameters","title":"get-started","text":"every possible combination generated. Instead, inner outer hyperparameters: possible combinations outer hyperparameters generated. version data (outer hyperparameter), combinations inner hyperparameters tested.","code":""},{"path":"/articles/get-started.html","id":"example","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > Finding the Best Hyperparameters","what":"Example","title":"get-started","text":"example, two versions dataset (one full dataset, one outliers removed), versions considered outer hyperparameters. function generate comparisons versions dataset. version, let’s say specify following inner hyperparameters: Spline parameters: Natural cubic splines degree freedom either 2 3. Adjusted p-value threshold: 0.05 0.1. function generate test combinations spline parameters p-value thresholds versions data: DoF = 2, threshold = 0.05 DoF = 3, threshold = 0.05 DoF = 2, threshold = 0.1 DoF = 3, threshold = 0.1 allows systematically explore different combinations select optimal hyperparameters analysis. can view example report report contains results comparison “outer” hyperparameters data 1 design (formula) 1 data 1 design 2. , combinations “inner” hyperparameters generated (every possible combination specified adj. p-value thresholds spline configs). encoding (part output screen_limma_hyperparams function).","code":"data1 <- data meta1 <- meta data2 <- data[, !(colnames(data) %in% c( \"E12_TP05_Exponential\", \"E10_TP10_Stationary\" ) )] meta2 <- meta[!meta$`Sample.ID` %in% c( \"E12_TP05_Exponential\", \"E10_TP10_Stationary\" ), ] datas <- list(data1, data2) datas_descr <- c( \"full_data\", \"outliers_removed\" ) metas <- list(meta1, meta2) designs <- c( \"~ 1 + Phase*X + Reactor\", \"~ 1 + X + Reactor\" ) condition <- \"Phase\" report_dir <- here::here( \"results\", \"hyperparams_screen_reports\" ) meta_batch_column = \"Reactor\" pthresholds <- c( 0.05, 0.1 ) # Create a dataframe with combinations of spline parameters to test # (every row a combo to test) spline_test_configs <- data.frame( # 'n' stands for natural cubic splines, b for B-splines. spline_type = c(\"n\", \"n\", \"b\", \"b\"), # Degree is not applicable (NA) for natural splines. degree = c(NA, NA, 2L, 4L), # Degrees of freedom (DoF) to test. # Higher dof means spline can fit more complex patterns. dof = c(2L, 3L, 3L, 4L) ) print(spline_test_configs) #> spline_type degree dof #> 1 n NA 2 #> 2 n NA 3 #> 3 b 2 3 #> 4 b 4 4 screen_limma_hyperparams( splineomics, datas, datas_descr, metas, designs, spline_test_configs, report_dir, pthresholds, )"},{"path":"/articles/get-started.html","id":"run-limma-spline-analysis","dir":"Articles","previous_headings":"","what":"Run limma spline analysis","title":"get-started","text":"identified hyperparameters likely best ones, can run limma spline analysis get results. Lets just assume now new parameters, SplineOmics object updated, best analysis. choice depends analysis. example, analysis, natural cubic splines (n) dof two seemed fit data best (overfitting, also underfitting), reason spline parameters chosen. output function run_limma_splines() named list, element specific “category” results. Refer document explanation different result categories. elements list, containing elements respective limma topTables, either level comparison two levels. element “time_effect” list, element topTable p-value feature respective level reported. element “avrg_diff_conditions” list contains elements topTables, represent comparison average differences levels. element “interaction_condition_time” list contains elements topTables, represent interaction levels (includes time average differences)","code":"splineomics <- update_splineomics( splineomics = splineomics, design = \"~ 1 + Phase*X + Reactor\", data = data2, meta = meta2, spline_params = list( spline_type = c(\"n\"), dof = c(2L) ) ) # Run the limma spline analysis splineomics <- run_limma_splines( splineomics ) #> Interaction terms identified in limma design formula. Selecting mode == integrated. This means that all levels are analysed using the full data. #> Column 'Reactor' of meta will be used to remove the batch effect for the plotting #> Info limma spline analysis completed successfully"},{"path":"/articles/get-started.html","id":"build-limma-report","dir":"Articles","previous_headings":"","what":"Build limma report","title":"get-started","text":"topTables three categories can used generate p-value histograms volcano plots. can view generated analysis report create_limma_report function .","code":"report_dir <- here::here( \"results\", \"create_limma_reports\" ) plots <- create_limma_report( splineomics, report_dir = report_dir )"},{"path":"/articles/get-started.html","id":"cluster-the-hits-significant-features","dir":"Articles","previous_headings":"","what":"Cluster the hits (significant features)","title":"get-started","text":"obtained limma spline results, can cluster hits based temporal pattern (spline shape). define hit setting adj. p-value threshold every level. , hierarchical clustering used place every hit one many clusters specified specific level. can view generated analysis report cluster_hits function .","code":"adj_pthresholds <- c( 0.05, 0.05 ) clusters <- c( 6L, 3L ) report_dir <- here::here( \"results\", \"clustering_reports\" ) plot_info = list( y_axis_label = \"log2 intensity\", time_unit = \"min\", treatment_labels = c(\"Feeding\"), treatment_timepoints = c(0) ) gene_column_name <- \"Gene_symbol\" genes <- data_excel[[gene_column_name]][4:nrow(data_excel)] clustering_results <- cluster_hits( splineomics = splineomics, analysis_type = \"time_effect\", adj_pthresholds = adj_pthresholds, clusters = clusters, genes = genes, plot_info = plot_info, report_dir = report_dir, )"},{"path":"/articles/get-started.html","id":"perform-gene-set-enrichment-analysis-gsea","dir":"Articles","previous_headings":"","what":"Perform gene set enrichment analysis (GSEA)","title":"get-started","text":"clustered hit, respective gene can assigned GSEA performed. , Enrichr databases choice downloaded: Per default file placed current working directory, root dir R project. run GSEA, downloaded database file loaded dataframe. , optionally, clusterProfiler parameters report dir can specified. function create_gsea_report() runs GSEA using clusterProfiler, generates HTML report returns GSEA dotplots R. can view generated analysis report cluster_hits function . Every row dotplots term specific database, columns respective clusters. color scale contains info odds ratio size -log10 adj. p-value. terms > 2 genes support included plot. , cluster, just maximally 5 terms shown (terms highest odds ratios). Note example cluster 1 already 5 terms, cluster 2 , gets term also found cluster 1, term included sixth term cluster 1, way maximum 5 can exceeded.","code":"gene_set_lib <- c( \"WikiPathways_2019_Human\", \"NCI-Nature_2016\", \"TRRUST_Transcription_Factors_2019\", \"MSigDB_Hallmark_2020\", \"GO_Cellular_Component_2018\", \"CORUM\", \"KEGG_2019_Human\", \"TRANSFAC_and_JASPAR_PWMs\", \"ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X\", \"GO_Biological_Process_2018\", \"GO_Molecular_Function_2018\", \"Human_Gene_Atlas\" ) download_enrichr_databases(gene_set_lib) downloaded_dbs_filepath <- here::here(\"all_databases_08_04_2024-12_41_50.tsv\") databases <- readr::read_tsv( downloaded_dbs_filepath, col_types = readr::cols() ) clusterProfiler_params <- list( adj_p_value = 0.05, pAdjustMethod = \"BH\", minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2 ) report_dir <- here::here( \"results\", \"gsea_reports\" ) result <- create_gsea_report( levels_clustered_hits = clustering_results$clustered_hits_levels, databases = databases, params = clusterProfiler_params, report_info = report_info, report_dir = report_dir )"},{"path":"/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Thomas Rauter. Maintainer.","code":""},{"path":"/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Rauter T (2024). SplineOmics: Streamlines process analysing omics timeseries data splines. R package version 0.1.0.","code":"@Manual{, title = {SplineOmics: Streamlines the process of analysing omics timeseries data with splines}, author = {Thomas Rauter}, year = {2024}, note = {R package version 0.1.0}, }"},{"path":"/index.html","id":"splineomics","dir":"","previous_headings":"","what":"Streamlines the process of analysing omics timeseries data with splines","title":"Streamlines the process of analysing omics timeseries data with splines","text":"R package SplineOmics finds significant features (hits) time-series -omics data using splines limma hypothesis testing. clusters hits based spline shape showing results summary HTML reports. graphical abstract shows full workflow streamlined SplineOmics:","code":""},{"path":"/index.html","id":"table-of-contents","dir":"","previous_headings":"","what":"Table of Contents","title":"Streamlines the process of analysing omics timeseries data with splines","text":"📘 Introduction 🐳 Docker Container Tutorial Functions Depth RNA-seq Glycan Data 📦 Dependencies 📚 Reading ❓ Getting Help 🤝 Contributing 💬 Feedback 📜 License 🎓 Citation 🌟 Contributors 🙏 Acknowledgements","code":""},{"path":"/index.html","id":"id_-introduction","dir":"","previous_headings":"","what":"📘 Introduction","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Welcome SplineOmics, R package designed streamline analysis -omics time-series data, followed automated HTML report generation.","code":""},{"path":"/index.html","id":"is-the-splineomics-package-of-use-for-me","dir":"","previous_headings":"📘 Introduction","what":"Is the SplineOmics package of use for me?","title":"Streamlines the process of analysing omics timeseries data with splines","text":"-omics data time, package help run limma splines, decide parameters use, perform clustering, run GSEA show result plots HTML reports. time-series data valid input limma package also valid input SplineOmics package (transcriptomics, proteomics, phosphoproteomics, metabolomics, glycan fractional abundances, etc.).","code":""},{"path":"/index.html","id":"what-do-i-need-precisely","dir":"","previous_headings":"📘 Introduction","what":"What do I need precisely?","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Data: data matrix row feature (e.g., protein, metabolite, etc.) column sample taken specific time. Meta: table metadata columns/samples data matrix (e.g., batch, time point, etc.) Annotation: table identifiers rows/features data matrix (e.g., gene protein name).","code":""},{"path":"/index.html","id":"capabilities","dir":"","previous_headings":"📘 Introduction","what":"Capabilities","title":"Streamlines the process of analysing omics timeseries data with splines","text":"SplineOmics, can: Automatically perform exploratory data analysis: explore_data() function generates HTML report, containing various plots, density, PCA, correlation heatmap plots (example report). Explore various limma splines hyperparameters: Test combinations hyperparameters, different datasets, limma design formulas, degrees freedom, p-value thresholds, etc., using screen_limma_hyperparams() function (example report (along encoding) Perform limma spline analysis: Use run_limma_splines() function perform limma analysis splines optimal hyperparameters identified (example report). Cluster significant features: Cluster significant features (hits) identified spline analysis cluster_hits() function (example report). Run GSEA clustered hits: Perform gene set enrichment analysis (GSEA) using clustered hits create_gsea_report() function (example report).","code":""},{"path":"/index.html","id":"id_-installation","dir":"","previous_headings":"","what":"🔧 Installation","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Follow steps install SplineOmics package GitHub repository R environment.","code":""},{"path":"/index.html","id":"prerequisites","dir":"","previous_headings":"🔧 Installation","what":"Prerequisites","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Ensure R installed system. , download install CRAN. RStudio recommended user-friendly experience R. Download install RStudio posit.co.","code":""},{"path":"/index.html","id":"installation-steps","dir":"","previous_headings":"🔧 Installation","what":"Installation Steps","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Open RStudio R console. Install SplineOmics GitHub dependencies. Copy paste following code block R console run script. Note Windows Users: Please read text code block running ! Note installation paths writable Windows, necessary running RStudio administrator installation. Otherwise, set library path (code block ) installation (re)run code block . Load SplineOmics package: installation complete, load SplineOmics package R session script start using :","code":"# Function to ensure a package is installed ensure_installed <- function(pkg) { if (!requireNamespace(pkg, quietly = TRUE)) { install.packages(pkg) } } # Install packages if not already available ensure_installed(\"BiocManager\") ensure_installed(\"remotes\") # Load packages library(BiocManager) library(remotes) # Install Bioconductor dependencies BiocManager::install(c( \"ComplexHeatmap\", \"limma\" ), force = TRUE) # Install SplineOmics from GitHub remotes::install_github( \"csbg/SplineOmics@ad35d9aef2e8a8b19572c83ec771f4d92b343a4e\", dependencies = TRUE, # Install all dependencies force = TRUE, # Force reinstallation upgrade = \"always\", # Always upgrade dependencies ) # Verify the installation if (\"SplineOmics\" %in% rownames(installed.packages())) { message(\"SplineOmics installed successfully.\") } else { message(\"SplineOmics installation failed.\") } # Create a directory for R libraries dir.create(\"~/Rlibs\", showWarnings = FALSE) # Set the library path to include the new directory .libPaths(c(\"~/Rlibs\", .libPaths())) library(SplineOmics)"},{"path":"/index.html","id":"troubleshooting","dir":"","previous_headings":"🔧 Installation","what":"Troubleshooting","title":"Streamlines the process of analysing omics timeseries data with splines","text":"encounter errors related dependencies package versions installation, try updating R RStudio latest versions repeat installation steps. issues specifically related SplineOmics package, check Issues section GitHub repository similar problems post new issue.","code":""},{"path":"/index.html","id":"id_-docker-container","dir":"","previous_headings":"🔧 Installation","what":"🐳 Docker Container","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Alternatively, can run analysis Docker container. underlying Docker image encapsulates SplineOmics package together necessary environment dependencies. ensures higher levels reproducibility analysis carried consistent environment, independent operating system custom configurations. information Docker containers can found official Docker page. instructions downloading image SplineOmics package running container, please refer Docker instructions.","code":""},{"path":"/index.html","id":"troubleshooting-1","dir":"","previous_headings":"🔧 Installation > 🐳 Docker Container","what":"Troubleshooting","title":"Streamlines the process of analysing omics timeseries data with splines","text":"face “permission denied” issues Linux distributions, check vignette.","code":""},{"path":[]},{"path":"/index.html","id":"tutorial","dir":"","previous_headings":"▶️ Usage","what":"Tutorial","title":"Streamlines the process of analysing omics timeseries data with splines","text":"tutorial covers real CHO cell time-series proteomics example start end. open R Markdown file tutorial RStudio, run: open R Markdown file RStudio containing template analysis, run:","code":"library(SplineOmics) open_tutorial() library(SplineOmics) open_template()"},{"path":"/index.html","id":"functions-in-depth","dir":"","previous_headings":"▶️ Usage","what":"Functions in Depth","title":"Streamlines the process of analysing omics timeseries data with splines","text":"detailed description arguments outputs functions package (exported internal functions) can found .","code":""},{"path":"/index.html","id":"design-limma-design-formula","dir":"","previous_headings":"▶️ Usage","what":"Design limma design formula","title":"Streamlines the process of analysing omics timeseries data with splines","text":"quick guide design limma design formula can found (PDF) explanation three different limma results can downloaded ","code":""},{"path":[]},{"path":"/index.html","id":"rna-seq-data","dir":"","previous_headings":"▶️ Usage > RNA-seq and Glycan Data","what":"RNA-seq data","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Transcriptomics data must preprocessed limma. done setting preprocess_rna_seq argument TRUE (see documentation create_splineomics() function). , raw RNA-seq counts provided data matrix undergo normalization transformation. default normalization performed using TMM (Trimmed Mean M-values) normalization via edgeR::calcNormFactors function, followed voom transformation limma package obtain log-transformed counts per million (logCPM) associated precision weights. require different normalization method, can supply custom normalization function.","code":""},{"path":"/index.html","id":"glycan-fractional-abundance-data","dir":"","previous_headings":"▶️ Usage > RNA-seq and Glycan Data","what":"Glycan fractional abundance data","title":"Streamlines the process of analysing omics timeseries data with splines","text":"glycan fractional abundance data matrix, row represents type glycan columns correspond timepoints, must transformed analysis. preprocessing step essential due compositional nature data. compositional data, increase abundance one component (glycan) necessarily results decrease others, introducing dependency among variables can bias analysis. One way address issue applying Centered Log Ratio (CLR) transformation data clr function compositions package:","code":"library(compositions) clr_transformed_data <- clr(data_matrix) # use as SplineOmics input"},{"path":"/index.html","id":"id_-dependencies","dir":"","previous_headings":"","what":"📦 Dependencies","title":"Streamlines the process of analysing omics timeseries data with splines","text":"SplineOmics package relies several R packages functionality. list dependencies automatically installed along SplineOmics. already packages installed, ensure date avoid compatibility issues. ComplexHeatmap: creating complex heatmaps advanced features. base64enc: encoding/decoding base64. dendextend: extending dendrogram objects R, allowing easier manipulation dendrograms. dplyr: data manipulation. ggplot2: creating elegant data visualizations using grammar graphics. ggrepel: better label placement ggplot2. : constructing paths project’s files. limma: linear models microarray data. openxlsx: reading, writing, editing xlsx files. patchwork: combining multiple ggplot objects single plot. pheatmap: creating pretty heatmaps. progress: adding progress bars loops apply functions. purrr: functional programming tools. rlang: tools work core language features R R’s base types. scales: scale functions visualization. tibble: creating tidy data frames easy work . tidyr: tidying data. zip: combining files zip file.","code":""},{"path":"/index.html","id":"optional-dependencies","dir":"","previous_headings":"📦 Dependencies","what":"Optional dependencies","title":"Streamlines the process of analysing omics timeseries data with splines","text":"dependencies necessary functions: edgeR: preprocessing RNA-seq data run_limma_splines() fun. clusterProfiler: run_gsea() function (gene set enrichment). rstudioapi: open_tutorial() open_template() functions.","code":""},{"path":"/index.html","id":"r-version","dir":"","previous_headings":"📦 Dependencies","what":"R Version","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Recommended: R 4.3.3 higher","code":""},{"path":"/index.html","id":"id_-further-reading","dir":"","previous_headings":"","what":"📚 Further Reading","title":"Streamlines the process of analysing omics timeseries data with splines","text":"interested gaining deeper understanding methodologies used SplineOmics package, recommended publications: Splines: learn splines, can refer review. limma: read limma R package, can refer publication. Hierarchical clustering: get information hierarchical clustering, can refer web article.","code":""},{"path":"/index.html","id":"id_-getting-help","dir":"","previous_headings":"","what":"❓ Getting Help","title":"Streamlines the process of analysing omics timeseries data with splines","text":"encounter bug suggestion improving SplineOmics package, encourage open issue GitHub repository. opening new issue, please check see question bug already reported another user. helps avoid duplicate reports ensures can address problems efficiently. detailed questions, discussions, contributions regarding package’s use development, please refer GitHub Discussions page SplineOmics.","code":""},{"path":"/index.html","id":"id_-contributing","dir":"","previous_headings":"","what":"🤝 Contributing","title":"Streamlines the process of analysing omics timeseries data with splines","text":"welcome contributions SplineOmics package! Whether ’re interested fixing bugs, adding new features, improving documentation, help greatly appreciated. ’s can contribute: Report Bug Request Feature: encounter bug idea new feature, please open issue GitHub repository. opening new issue, check see issue already reported feature requested another user. Submit Pull Request: ’ve developed bug fix new feature ’d like share, submit pull request. Improve Documentation: Good documentation crucial project. notice missing incorrect documentation, please feel free contribute. Please adhere Code Conduct interactions project. Thank considering contributing SplineOmics. efforts make open-source community fantastic place learn, inspire, create.","code":""},{"path":"/index.html","id":"id_-feedback","dir":"","previous_headings":"","what":"💬 Feedback","title":"Streamlines the process of analysing omics timeseries data with splines","text":"appreciate feedback! Besides raising issues, can provide feedback following ways: Direct Email: Send feedback directly Thomas Rauter. Anonymous Feedback: Use Google Form provide anonymous feedback answering questions. feedback helps us improve project address issues may encounter.","code":""},{"path":"/index.html","id":"id_-license","dir":"","previous_headings":"","what":"📜 License","title":"Streamlines the process of analysing omics timeseries data with splines","text":"package licensed MIT License: LICENSE © 2024 Thomas Rauter. rights reserved.","code":""},{"path":"/index.html","id":"id_-citation","dir":"","previous_headings":"","what":"🎓 Citation","title":"Streamlines the process of analysing omics timeseries data with splines","text":"SplineOmics package currently published peer-reviewed scientific journal similar outlet. However, package helped work, consider citing GitHub repository. cite package, can use citation information provided inst/CITATION.cff file. can also generate citation various formats using CITATION.cff file visiting top right repo clicking “Cite repository” button. Also, like package, consider giving GitHub repository star. support helps us continued development improvement SplineOmics. Thank using package!","code":""},{"path":"/index.html","id":"id_-contributors","dir":"","previous_headings":"","what":"🌟 Contributors","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Thomas-Rauter - 🚀 Wrote package, developed approach together VSchaepertoens guidance nfortelny skafdasschaf. nfortelny - 🧠 Principal Investigator, provided guidance support overall approach. skafdasschaf - 🔧 Helped reviewing code, delivered improvement suggestions scientific guidance develop approach. VSchaepertoens - ✨ Developed one internal plotting function, well code exploratory data analysis plots, overall approach together Thomas-Rauter.","code":""},{"path":"/index.html","id":"id_-acknowledgements","dir":"","previous_headings":"","what":"🙏 Acknowledgements","title":"Streamlines the process of analysing omics timeseries data with splines","text":"work carried context DigiTherapeutX project, funded Austrian Science Fund (FWF). research conducted supervision Prof. Nikolaus Fortelny, leads Computational Systems Biology working group Paris Lodron University Salzburg, Austria. can find information Prof. Fortelny’s research group .","code":""},{"path":"/reference/InputControl.html","id":null,"dir":"Reference","previous_headings":"","what":"InputControl: A class for controlling and validating inputs — InputControl","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"InputControl: class controlling validating inputs InputControl: class controlling validating inputs","code":""},{"path":"/reference/InputControl.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"class provides methods validate inputs function. method performs following checks: * Ensures `annotation` `data` provided. * Confirms `annotation` dataframe. * Verifies `annotation` `data` number rows. checks fail, informative error message returned. - method first checks lengths designs modes equal. , raises error. - checks modes NULL, , method returns without performing checks. - mode modes, method sets self$args$mode current mode calls self$check_mode(). function performs following checks: - `clusters` integer vector integers. Otherwise, gives error. Check Plot Info method performs following checks: * Ensures `plot_info` provided NULL. * Confirms `y_axis_label` character vector maximally 30 characters. * Confirms `time_unit` character vector maximally 15 characters. * Validates `treatment_labels` either `NA` character vector element maximally 15 characters long. * Validates `treatment_timepoints` either `NA` numeric vector length `treatment_labels` `treatment_labels` `NA`. checks fail, informative error message returned. method performs following checks: * Ensures `analysis_mode` provided NULL. * Confirms `analysis_mode` character vector length 1. * Validates `analysis_mode` matches one allowed values. checks fail, informative error message returned. function performs following checks: 1. Ensures `feature_name_columns` `annotation` `NULL`. 2. Verifies element `feature_name_columns` character length 1. 3. Checks elements `feature_name_columns` valid column names `annotation` data frame. Check Report function performs following checks: - Whether `report` argument present. - `report` Boolean value (`TRUE` `FALSE`), throws error.","code":""},{"path":"/reference/InputControl.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"InputControl: method verifies spline test configurations associated metadata within object's arguments. performs series checks configurations, including column verification, spline type validation, ensuring degrees freedom (dof) within acceptable ranges.","code":""},{"path":[]},{"path":"/reference/InputControl.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"SplineOmics::Level4Functions -> SplineOmics::Level3Functions -> SplineOmics::Level2Functions -> InputControl","code":""},{"path":"/reference/InputControl.html","id":"public-fields","dir":"Reference","previous_headings":"","what":"Public fields","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"args list arguments validated. Initialize InputControl object","code":""},{"path":"/reference/InputControl.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"SplineOmics::Level4Functions$create_error_message() SplineOmics::Level3Functions$check_batch_column() SplineOmics::Level3Functions$check_condition_time_consistency() SplineOmics::Level3Functions$check_voom_structure() SplineOmics::Level2Functions$check_columns() SplineOmics::Level2Functions$check_columns_spline_test_configs() SplineOmics::Level2Functions$check_data() SplineOmics::Level2Functions$check_dataframe() SplineOmics::Level2Functions$check_max_and_min_dof() SplineOmics::Level2Functions$check_meta() SplineOmics::Level2Functions$check_spline_params_generally() SplineOmics::Level2Functions$check_spline_params_mode_dependent() SplineOmics::Level2Functions$check_spline_type_column() SplineOmics::Level2Functions$check_spline_type_params()","code":""},{"path":"/reference/InputControl.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"InputControl$new() InputControl$auto_validate() InputControl$check_data_and_meta() InputControl$check_annotation() InputControl$check_datas_and_metas() InputControl$check_datas_descr() InputControl$check_top_tables() InputControl$check_mode() InputControl$check_modes() InputControl$check_design_formula() InputControl$check_designs_and_metas() InputControl$check_spline_params() InputControl$check_spline_test_configs() InputControl$check_limma_top_tables() InputControl$check_adj_pthresholds() InputControl$check_clusters() InputControl$check_plot_info() InputControl$check_report_dir() InputControl$check_genes() InputControl$check_padjust_method() InputControl$check_report_info() InputControl$check_analysis_type() InputControl$check_feature_name_columns() InputControl$check_report() InputControl$clone()","code":""},{"path":[]},{"path":"/reference/InputControl.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$new(args)"},{"path":"/reference/InputControl.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"args list arguments validated.","code":""},{"path":"/reference/InputControl.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"new instance InputControl class. Automatically Validate Arguments method automatically validates arguments sequentially calling various validation methods defined within class. validation method checks specific aspects input arguments raises error validation fails. following validation methods called sequence: - self$check_data_and_meta() - self$check_datas_and_metas() - self$check_datas_descr() - self$check_mode() - self$check_modes() - self$check_design_formula() - self$check_designs_and_metas() - self$check_spline_params() - self$check_spline_test_configs() - self$check_adj_pthresholds() - self$check_clusters() - self$check_time_unit() - self$check_report_dir() - self$check_padjust_method() - self$check_report_info() - self$check_report() - self$check_feature_name_columns()","code":""},{"path":[]},{"path":"/reference/InputControl.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$auto_validate()"},{"path":"/reference/InputControl.html","id":"returns-1","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL. function used side effects validating input arguments raising errors validation fails. Check Data Meta","code":""},{"path":"/reference/InputControl.html","id":"method-check-data-and-meta-","dir":"Reference","previous_headings":"","what":"Method check_data_and_meta()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks validity data meta objects, ensuring data matrix numeric values meta dataframe containing specified condition column. Additionally, verifies number columns data matrix matches number rows meta dataframe.","code":""},{"path":"/reference/InputControl.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_data_and_meta()"},{"path":"/reference/InputControl.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"data matrix containing numeric values. meta dataframe containing metadata, including 'Time' column specified condition column. condition single character string specifying column name meta dataframe checked. meta_batch_column optional parameter specifying column name meta dataframe used remove batch effect. Default NA. data_meta_index optional parameter specifying index data/meta pair error messages. Default NA.","code":""},{"path":"/reference/InputControl.html","id":"returns-2","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns TRUE checks pass. Stops execution returns error message check fails. Check Annotation Consistency","code":""},{"path":"/reference/InputControl.html","id":"method-check-annotation-","dir":"Reference","previous_headings":"","what":"Method check_annotation()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"method checks consistency annotation data. ensures annotation dataframe number rows data.","code":""},{"path":"/reference/InputControl.html","id":"usage-3","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_annotation()"},{"path":"/reference/InputControl.html","id":"returns-3","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL required arguments missing. Otherwise, performs checks potentially raises errors checks fail. Check Multiple Data Meta Pairs","code":""},{"path":"/reference/InputControl.html","id":"method-check-datas-and-metas-","dir":"Reference","previous_headings":"","what":"Method check_datas_and_metas()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Iterates multiple data meta pairs validate pair using `check_data_and_meta` function.","code":""},{"path":"/reference/InputControl.html","id":"usage-4","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_datas_and_metas()"},{"path":"/reference/InputControl.html","id":"arguments-2","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"datas list matrices containing numeric values. metas list data frames containing metadata. condition character string specifying column name meta dataframe checked. meta_batch_column optional parameter specifying column name meta dataframe used remove batch effect. Default NA. meta_batch2_column optional parameter specifying column name meta dataframe used remove second batch effect. Default NA.","code":""},{"path":"/reference/InputControl.html","id":"returns-4","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL check fails, otherwise returns TRUE. Check Data Descriptions","code":""},{"path":"/reference/InputControl.html","id":"method-check-datas-descr-","dir":"Reference","previous_headings":"","what":"Method check_datas_descr()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates data descriptions character vectors element exceeding 80 characters length.","code":""},{"path":"/reference/InputControl.html","id":"usage-5","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_datas_descr()"},{"path":"/reference/InputControl.html","id":"arguments-3","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"datas_descr character vector data descriptions.","code":""},{"path":"/reference/InputControl.html","id":"returns-5","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"return value, called side effects.","code":""},{"path":"/reference/InputControl.html","id":"method-check-top-tables-","dir":"Reference","previous_headings":"","what":"Method check_top_tables()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates top tables list dataframes checks dataframe using `check_dataframe` function.","code":""},{"path":"/reference/InputControl.html","id":"usage-6","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_top_tables()"},{"path":"/reference/InputControl.html","id":"arguments-4","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"top_tables list top tables limma analysis.","code":""},{"path":"/reference/InputControl.html","id":"returns-6","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"return value, called side effects. Check Mode","code":""},{"path":"/reference/InputControl.html","id":"method-check-mode-","dir":"Reference","previous_headings":"","what":"Method check_mode()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates mode either 'integrated' 'isolated', depends design formula used limma.","code":""},{"path":"/reference/InputControl.html","id":"usage-7","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_mode()"},{"path":"/reference/InputControl.html","id":"arguments-5","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"mode character string specifying mode.","code":""},{"path":"/reference/InputControl.html","id":"returns-7","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"message indicating chosen mode valid; otherwise, error thrown.","code":""},{"path":[]},{"path":"/reference/InputControl.html","id":"usage-8","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_modes()"},{"path":"/reference/InputControl.html","id":"returns-8","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL. function used side effects validating mode raising errors validation fails. Check Design Formula","code":""},{"path":"/reference/InputControl.html","id":"method-check-design-formula-","dir":"Reference","previous_headings":"","what":"Method check_design_formula()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates design formula ensuring valid character string, contains allowed characters, includes intercept term 'X', references columns present metadata.","code":""},{"path":"/reference/InputControl.html","id":"usage-9","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_design_formula()"},{"path":"/reference/InputControl.html","id":"arguments-6","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"formula character string representing design formula. meta data frame containing metadata. meta_index optional index data/meta pair.","code":""},{"path":"/reference/InputControl.html","id":"returns-9","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"TRUE design formula valid, otherwise error thrown.","code":""},{"path":"/reference/InputControl.html","id":"method-check-designs-and-metas-","dir":"Reference","previous_headings":"","what":"Method check_designs_and_metas()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Iterates multiple design formulas corresponding metadata validate pair using `check_design_formula` function.","code":""},{"path":"/reference/InputControl.html","id":"usage-10","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_designs_and_metas()"},{"path":"/reference/InputControl.html","id":"arguments-7","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"designs vector character strings representing design formulas. metas list data frames containing metadata. meta_indices vector optional indices data/meta pairs.","code":""},{"path":"/reference/InputControl.html","id":"returns-10","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL check fails, otherwise returns TRUE. Check Spline Parameters","code":""},{"path":"/reference/InputControl.html","id":"method-check-spline-params-","dir":"Reference","previous_headings":"","what":"Method check_spline_params()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates spline parameters generally depending specified mode.","code":""},{"path":"/reference/InputControl.html","id":"usage-11","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_spline_params()"},{"path":"/reference/InputControl.html","id":"arguments-8","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"spline_params list spline parameters. mode character string specifying mode ('integrated' 'isolated'). meta dataframe containing metadata. condition character string specifying condition.","code":""},{"path":"/reference/InputControl.html","id":"returns-11","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns `NULL` required arguments mising, otherwise, called side effects. Check Spline Test Configurations","code":""},{"path":[]},{"path":"/reference/InputControl.html","id":"usage-12","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_spline_test_configs()"},{"path":"/reference/InputControl.html","id":"arguments-9","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"spline_test_configs configuration object spline tests. metas list metadata corresponding data matrices.","code":""},{"path":"/reference/InputControl.html","id":"returns-12","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns `NULL` required arguments mising, otherwise, called side effects. Check Limma Top Tables Structure function checks provided limma top tables data structure correctly formatted. ensures data structure contains exactly three named elements ('time_effect', 'avrg_diff_conditions', 'interaction_condition_time') element contains dataframes correct columns data types.","code":""},{"path":[]},{"path":"/reference/InputControl.html","id":"usage-13","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_limma_top_tables()"},{"path":"/reference/InputControl.html","id":"arguments-10","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"self object containing data structure check.","code":""},{"path":"/reference/InputControl.html","id":"returns-13","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function return value. stops execution data structure match expected format. Check Adjusted p-Thresholds","code":""},{"path":"/reference/InputControl.html","id":"method-check-adj-pthresholds-","dir":"Reference","previous_headings":"","what":"Method check_adj_pthresholds()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks validity adjusted p-thresholds vector, ensuring elements numeric, greater 0, less 1. conditions met, function stops execution returns error message indicating offending elements.","code":""},{"path":"/reference/InputControl.html","id":"usage-14","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_adj_pthresholds()"},{"path":"/reference/InputControl.html","id":"arguments-11","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"adj_pthresholds numeric vector adjusted p-thresholds.","code":""},{"path":"/reference/InputControl.html","id":"returns-14","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns TRUE checks pass. Stops execution returns error message check fails. Check Clusters","code":""},{"path":"/reference/InputControl.html","id":"method-check-clusters-","dir":"Reference","previous_headings":"","what":"Method check_clusters()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function verifies cluster configurations within object's arguments. checks clusters argument present performs validation content. clusters specified, defaults automatic cluster estimation.","code":""},{"path":"/reference/InputControl.html","id":"usage-15","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_clusters()"},{"path":"/reference/InputControl.html","id":"method-check-plot-info-","dir":"Reference","previous_headings":"","what":"Method check_plot_info()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"method checks validity `plot_info` list. ensures `y_axis_label` `time_unit` meet length constraints, `treatment_labels` either `NA` character vector elements meeting length constraint, `treatment_timepoints` either `NA` numeric vector length `treatment_labels`.","code":""},{"path":"/reference/InputControl.html","id":"usage-16","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_plot_info()"},{"path":"/reference/InputControl.html","id":"returns-15","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL `plot_info` provided invalid. Otherwise, performs checks potentially raises errors checks fail. Check Create Report Directory","code":""},{"path":"/reference/InputControl.html","id":"method-check-report-dir-","dir":"Reference","previous_headings":"","what":"Method check_report_dir()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks specified report directory exists valid directory. directory exist, attempts create . warnings errors directory creation, function stops execution returns error message.","code":""},{"path":"/reference/InputControl.html","id":"usage-17","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_report_dir()"},{"path":"/reference/InputControl.html","id":"arguments-12","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"report_dir character string specifying path report directory.","code":""},{"path":"/reference/InputControl.html","id":"returns-16","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns TRUE directory exists successfully created. Stops execution returns error message directory created valid. Check Genes Validity","code":""},{"path":"/reference/InputControl.html","id":"method-check-genes-","dir":"Reference","previous_headings":"","what":"Method check_genes()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks validity `data` `genes` arguments within `self$args` list. ensures `genes` character vector, neither `data` `genes` `NULL`, length `genes` matches number rows `data`.","code":""},{"path":"/reference/InputControl.html","id":"usage-18","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_genes()"},{"path":"/reference/InputControl.html","id":"returns-17","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns `TRUE` checks pass. Returns `NULL` required arguments `NULL`. Throws error `genes` character vector length `genes` match number rows `data`. Check p-Adjustment Method","code":""},{"path":"/reference/InputControl.html","id":"method-check-padjust-method-","dir":"Reference","previous_headings":"","what":"Method check_padjust_method()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks provided p-adjustment method valid. valid methods : \"holm\", \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". method one , function stops execution returns error message.","code":""},{"path":"/reference/InputControl.html","id":"usage-19","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_padjust_method()"},{"path":"/reference/InputControl.html","id":"arguments-13","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"padjust_method character string specifying p-adjustment method. Valid options \"holm\", \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\".","code":""},{"path":"/reference/InputControl.html","id":"returns-18","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns TRUE p-adjustment method valid. Stops execution returns error message method invalid. Check Report Information","code":""},{"path":"/reference/InputControl.html","id":"method-check-report-info-","dir":"Reference","previous_headings":"","what":"Method check_report_info()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates report information ensure contains mandatory fields adheres required formats.","code":""},{"path":"/reference/InputControl.html","id":"usage-20","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_report_info()"},{"path":"/reference/InputControl.html","id":"arguments-14","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"report_info named list containing report information.","code":""},{"path":"/reference/InputControl.html","id":"returns-19","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"TRUE report information valid; otherwise, error thrown. Check Analysis Mode","code":""},{"path":"/reference/InputControl.html","id":"method-check-analysis-type-","dir":"Reference","previous_headings":"","what":"Method check_analysis_type()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"method checks validity `analysis_mode` argument. ensures `analysis_mode` character vector length 1 matches one allowed analysis modes: \"time_effect\", \"avrg_diff_conditions\", \"interaction_condition_time\".","code":""},{"path":"/reference/InputControl.html","id":"usage-21","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_analysis_type()"},{"path":"/reference/InputControl.html","id":"returns-20","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL `analysis_mode` provided invalid. Otherwise, performs checks potentially raises errors checks fail. Check Feature Name Columns","code":""},{"path":"/reference/InputControl.html","id":"method-check-feature-name-columns-","dir":"Reference","previous_headings":"","what":"Method check_feature_name_columns()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks whether elements `feature_name_columns` characters length 1 whether valid column names `annotation` data frame.","code":""},{"path":"/reference/InputControl.html","id":"usage-22","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_feature_name_columns()"},{"path":"/reference/InputControl.html","id":"returns-21","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns `NULL` required arguments missing. Throws error element `feature_name_columns` character length 1 element column name `annotation`. Returns `TRUE` checks pass.","code":""},{"path":"/reference/InputControl.html","id":"method-check-report-","dir":"Reference","previous_headings":"","what":"Method check_report()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function verifies `report` argument within object's arguments. checks `report` argument present validates Boolean value.","code":""},{"path":"/reference/InputControl.html","id":"usage-23","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_report()"},{"path":"/reference/InputControl.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"objects class cloneable method.","code":""},{"path":"/reference/InputControl.html","id":"usage-24","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$clone(deep = FALSE)"},{"path":"/reference/InputControl.html","id":"arguments-15","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"deep Whether make deep clone.","code":""},{"path":"/reference/Level2Functions.html","id":null,"dir":"Reference","previous_headings":"","what":"Level2Functions: A class providing level 2 functionalities — Level2Functions","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Level2Functions: class providing level 2 functionalities Level2Functions: class providing level 2 functionalities","code":""},{"path":"/reference/Level2Functions.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"class provides various level 2 functionalities, including methods check dataframes spline parameters.","code":""},{"path":[]},{"path":"/reference/Level2Functions.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"SplineOmics::Level4Functions -> SplineOmics::Level3Functions -> Level2Functions","code":""},{"path":"/reference/Level2Functions.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"SplineOmics::Level4Functions$create_error_message() SplineOmics::Level3Functions$check_batch_column() SplineOmics::Level3Functions$check_condition_time_consistency() SplineOmics::Level3Functions$check_voom_structure()","code":""},{"path":"/reference/Level2Functions.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Level2Functions$check_data() Level2Functions$check_meta() Level2Functions$check_dataframe() Level2Functions$check_spline_params_generally() Level2Functions$check_spline_params_mode_dependent() Level2Functions$check_columns_spline_test_configs() Level2Functions$check_spline_type_column() Level2Functions$check_spline_type_params() Level2Functions$check_max_and_min_dof() Level2Functions$check_columns() Level2Functions$clone()","code":""},{"path":"/reference/Level2Functions.html","id":"method-check-data-","dir":"Reference","previous_headings":"","what":"Method check_data()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"function checks validity data matrix, ensuring matrix, contains numeric values, missing values, elements non-negative. Additionally, verifies rows columns entirely zeros.","code":""},{"path":"/reference/Level2Functions.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_data(data, data_meta_index = NULL)"},{"path":"/reference/Level2Functions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"data dataframe containing numeric values. data_meta_index optional parameter specifying index data error messages. Default NA.","code":""},{"path":"/reference/Level2Functions.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Returns TRUE checks pass. Stops execution returns error message check fails. Check Metadata","code":""},{"path":"/reference/Level2Functions.html","id":"method-check-meta-","dir":"Reference","previous_headings":"","what":"Method check_meta()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"function checks validity metadata dataframe, ensuring contains 'Time' column, contain missing values, specified condition column valid appropriate type. Additionally, checks optional batch effect column prints messages regarding use.","code":""},{"path":"/reference/Level2Functions.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_meta( meta, condition, meta_batch_column = NULL, meta_batch2_column = NULL, data_meta_index = NULL )"},{"path":"/reference/Level2Functions.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"meta dataframe containing metadata, including 'Time' column. condition single character string specifying column name meta dataframe checked. meta_batch_column optional parameter specifying column name meta dataframe used remove batch effect. Default NA. meta_batch2_column optional parameter specifying column name meta dataframe used remove batch effect. Default NA. data_meta_index optional parameter specifying index data/meta pair error messages. Default NA.","code":""},{"path":"/reference/Level2Functions.html","id":"returns-1","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Returns TRUE checks pass. Stops execution returns error message check fails. Check Dataframe","code":""},{"path":"/reference/Level2Functions.html","id":"method-check-dataframe-","dir":"Reference","previous_headings":"","what":"Method check_dataframe()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates dataframe contains required columns correct data types.","code":""},{"path":"/reference/Level2Functions.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_dataframe(df)"},{"path":"/reference/Level2Functions.html","id":"arguments-2","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"df dataframe check.","code":""},{"path":"/reference/Level2Functions.html","id":"returns-2","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"TRUE dataframe valid, otherwise error thrown. Check Spline Parameters Generally","code":""},{"path":"/reference/Level2Functions.html","id":"method-check-spline-params-generally-","dir":"Reference","previous_headings":"","what":"Method check_spline_params_generally()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates general structure contents spline parameters.","code":""},{"path":"/reference/Level2Functions.html","id":"usage-3","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_spline_params_generally(spline_params)"},{"path":"/reference/Level2Functions.html","id":"arguments-3","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_params list spline parameters.","code":""},{"path":"/reference/Level2Functions.html","id":"returns-3","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects. Check Spline Parameters Mode Dependent","code":""},{"path":"/reference/Level2Functions.html","id":"method-check-spline-params-mode-dependent-","dir":"Reference","previous_headings":"","what":"Method check_spline_params_mode_dependent()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates spline parameters depending specified mode.","code":""},{"path":"/reference/Level2Functions.html","id":"usage-4","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_spline_params_mode_dependent( spline_params, mode, meta, condition )"},{"path":"/reference/Level2Functions.html","id":"arguments-4","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_params list spline parameters. mode character string specifying mode ('integrated' 'isolated'). meta dataframe containing metadata. condition character string specifying condition.","code":""},{"path":"/reference/Level2Functions.html","id":"returns-4","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects. Check Columns Spline Test Configurations","code":""},{"path":"/reference/Level2Functions.html","id":"method-check-columns-spline-test-configs-","dir":"Reference","previous_headings":"","what":"Method check_columns_spline_test_configs()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates spline test configurations contain required columns correct order.","code":""},{"path":"/reference/Level2Functions.html","id":"usage-5","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_columns_spline_test_configs(spline_test_configs)"},{"path":"/reference/Level2Functions.html","id":"arguments-5","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_test_configs dataframe containing spline test configurations.","code":""},{"path":"/reference/Level2Functions.html","id":"returns-5","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects.","code":""},{"path":"/reference/Level2Functions.html","id":"method-check-spline-type-column-","dir":"Reference","previous_headings":"","what":"Method check_spline_type_column()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates 'spline_type' column spline test configurations contains 'n' 'b'.","code":""},{"path":"/reference/Level2Functions.html","id":"usage-6","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_spline_type_column(spline_test_configs)"},{"path":"/reference/Level2Functions.html","id":"arguments-6","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_test_configs dataframe containing spline test configurations.","code":""},{"path":"/reference/Level2Functions.html","id":"returns-6","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects.","code":""},{"path":"/reference/Level2Functions.html","id":"method-check-spline-type-params-","dir":"Reference","previous_headings":"","what":"Method check_spline_type_params()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates parameters row spline test configurations based spline type.","code":""},{"path":"/reference/Level2Functions.html","id":"usage-7","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_spline_type_params(spline_test_configs)"},{"path":"/reference/Level2Functions.html","id":"arguments-7","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_test_configs dataframe containing spline test configurations.","code":""},{"path":"/reference/Level2Functions.html","id":"returns-7","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"TRUE checks pass, otherwise error thrown.","code":""},{"path":"/reference/Level2Functions.html","id":"method-check-max-and-min-dof-","dir":"Reference","previous_headings":"","what":"Method check_max_and_min_dof()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates degrees freedom (DoF) row spline test configurations based metadata.","code":""},{"path":"/reference/Level2Functions.html","id":"usage-8","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_max_and_min_dof(spline_test_configs, metas)"},{"path":"/reference/Level2Functions.html","id":"arguments-8","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_test_configs dataframe containing spline test configurations. metas list metadata corresponding data matrices.","code":""},{"path":"/reference/Level2Functions.html","id":"returns-8","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects.","code":""},{"path":[]},{"path":"/reference/Level2Functions.html","id":"usage-9","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_columns(df, expected_cols)"},{"path":"/reference/Level2Functions.html","id":"arguments-9","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"df dataframe check. expected_cols character vector expected column names.","code":""},{"path":"/reference/Level2Functions.html","id":"returns-9","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"function return value. stops execution dataframe columns classes match expected structure.","code":""},{"path":"/reference/Level2Functions.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"objects class cloneable method.","code":""},{"path":"/reference/Level2Functions.html","id":"usage-10","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$clone(deep = FALSE)"},{"path":"/reference/Level2Functions.html","id":"arguments-10","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"deep Whether make deep clone.","code":""},{"path":"/reference/Level3Functions.html","id":null,"dir":"Reference","previous_headings":"","what":"Level3Functions: A class for level 3 utility functions — Level3Functions","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"Level3Functions: class level 3 utility functions Level3Functions: class level 3 utility functions","code":""},{"path":"/reference/Level3Functions.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"class provides methods creating error messages checking batch columns. function verifies `voom` object contains following components: - `E`: matrix log2-counts per million (logCPM) values. - `weights`: matrix observation-specific weights matches dimensions `E`. - `design`: matrix representing design matrix used linear modeling, number rows columns `E`. function also checks optional components : - `genes`: data frame gene annotations. - `targets`: data frame target information. - `sample.weights`: numeric vector sample-specific weights. checks fail, function stops reports issues. structure valid, message confirming validity printed.","code":""},{"path":[]},{"path":"/reference/Level3Functions.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"SplineOmics::Level4Functions -> Level3Functions","code":""},{"path":"/reference/Level3Functions.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"SplineOmics::Level4Functions$create_error_message()","code":""},{"path":"/reference/Level3Functions.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"Level3Functions$check_voom_structure() Level3Functions$check_batch_column() Level3Functions$check_condition_time_consistency() Level3Functions$clone()","code":""},{"path":"/reference/Level3Functions.html","id":"method-check-voom-structure-","dir":"Reference","previous_headings":"","what":"Method check_voom_structure()","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"function checks structure `voom` object ensure contains expected components components correct types dimensions. function check actual data within matrices.","code":""},{"path":"/reference/Level3Functions.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"","code":"Level3Functions$check_voom_structure(voom_obj)"},{"path":"/reference/Level3Functions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"voom_obj list representing `voom` object, typically created `voom` function `limma` package.","code":""},{"path":"/reference/Level3Functions.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"Boolean TRUE FALSE. However, function mostly called side effects, stop script structure valid. Check Batch Column","code":""},{"path":"/reference/Level3Functions.html","id":"method-check-batch-column-","dir":"Reference","previous_headings":"","what":"Method check_batch_column()","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"method checks batch column metadata provides appropriate messages.","code":""},{"path":"/reference/Level3Functions.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"","code":"Level3Functions$check_batch_column(meta, meta_batch_column, data_meta_index)"},{"path":"/reference/Level3Functions.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"meta dataframe containing metadata. meta_batch_column character string specifying batch column metadata. data_meta_index optional parameter specifying index data/meta pair. Default NA.","code":""},{"path":"/reference/Level3Functions.html","id":"returns-1","dir":"Reference","previous_headings":"","what":"Returns","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"NULL. method used side effects throwing errors printing messages. Check Condition Time Consistency","code":""},{"path":"/reference/Level3Functions.html","id":"method-check-condition-time-consistency-","dir":"Reference","previous_headings":"","what":"Method check_condition_time_consistency()","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"function checks whether values `condition` column unique values block identical `Time` values `meta` dataframe. Additionally, ensures every new block given time new value `condition` column.","code":""},{"path":"/reference/Level3Functions.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"","code":"Level3Functions$check_condition_time_consistency(meta, condition)"},{"path":"/reference/Level3Functions.html","id":"arguments-2","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"meta dataframe containing metadata, including `Time` column. condition character string specifying column name `meta` used define groups analysis.","code":""},{"path":"/reference/Level3Functions.html","id":"returns-2","dir":"Reference","previous_headings":"","what":"Returns","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"Logical TRUE condition values consistent time series pattern.","code":""},{"path":"/reference/Level3Functions.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"objects class cloneable method.","code":""},{"path":"/reference/Level3Functions.html","id":"usage-3","dir":"Reference","previous_headings":"","what":"Usage","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"","code":"Level3Functions$clone(deep = FALSE)"},{"path":"/reference/Level3Functions.html","id":"arguments-3","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"deep Whether make deep clone.","code":""},{"path":"/reference/Level4Functions.html","id":null,"dir":"Reference","previous_headings":"","what":"Level4Functions: A class for level 3 utility functions — Level4Functions","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"Level4Functions: class level 3 utility functions Level4Functions: class level 3 utility functions","code":""},{"path":"/reference/Level4Functions.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"class provides methods creating error messages checking batch columns.","code":""},{"path":[]},{"path":[]},{"path":"/reference/Level4Functions.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"Level4Functions$create_error_message() Level4Functions$clone()","code":""},{"path":"/reference/Level4Functions.html","id":"method-create-error-message-","dir":"Reference","previous_headings":"","what":"Method create_error_message()","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"method creates formatted error message includes index data/meta pair provided. index provided, returns message .","code":""},{"path":"/reference/Level4Functions.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"","code":"Level4Functions$create_error_message(message, data_meta_index = NULL)"},{"path":"/reference/Level4Functions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"message character string specifying error message. data_meta_index optional parameter specifying index data/meta pair error message. Default NA.","code":""},{"path":"/reference/Level4Functions.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"Returns formatted error message string. index provided, message includes index; otherwise, returns message .","code":""},{"path":"/reference/Level4Functions.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"objects class cloneable method.","code":""},{"path":"/reference/Level4Functions.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"","code":"Level4Functions$clone(deep = FALSE)"},{"path":"/reference/Level4Functions.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"deep Whether make deep clone.","code":""},{"path":"/reference/NumericBlockFinder.html","id":null,"dir":"Reference","previous_headings":"","what":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"class provides methods identify upper-left lower-right cells numeric block within dataframe.","code":""},{"path":"/reference/NumericBlockFinder.html","id":"public-fields","dir":"Reference","previous_headings":"","what":"Public fields","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"data dataframe containing input data. upper_left_cell list containing row column indices upper-left cell. Initialize NumericBlockFinder object","code":""},{"path":[]},{"path":"/reference/NumericBlockFinder.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"NumericBlockFinder$new() NumericBlockFinder$find_upper_left_cell() NumericBlockFinder$find_lower_right_cell() NumericBlockFinder$clone()","code":""},{"path":[]},{"path":"/reference/NumericBlockFinder.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"","code":"NumericBlockFinder$new(data)"},{"path":"/reference/NumericBlockFinder.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"data dataframe containing input data.","code":""},{"path":"/reference/NumericBlockFinder.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"new instance NumericBlockFinder class. Find upper-left cell first 6x6 block numeric values method identifies upper-left cell first 6x6 block numeric values dataframe.","code":""},{"path":[]},{"path":"/reference/NumericBlockFinder.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"","code":"NumericBlockFinder$find_upper_left_cell()"},{"path":"/reference/NumericBlockFinder.html","id":"returns-1","dir":"Reference","previous_headings":"","what":"Returns","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"list containing row column indices upper-left cell. Find lower-right cell block contiguous non-NA values method identifies lower-right cell block contiguous non-NA values starting given upper-left cell dataframe.","code":""},{"path":[]},{"path":"/reference/NumericBlockFinder.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"","code":"NumericBlockFinder$find_lower_right_cell()"},{"path":"/reference/NumericBlockFinder.html","id":"returns-2","dir":"Reference","previous_headings":"","what":"Returns","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"list containing row column indices lower-right cell.","code":""},{"path":"/reference/NumericBlockFinder.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"objects class cloneable method.","code":""},{"path":"/reference/NumericBlockFinder.html","id":"usage-3","dir":"Reference","previous_headings":"","what":"Usage","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"","code":"NumericBlockFinder$clone(deep = FALSE)"},{"path":"/reference/NumericBlockFinder.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"deep Whether make deep clone.","code":""},{"path":"/reference/SplineOmics-package.html","id":null,"dir":"Reference","previous_headings":"","what":"Package Name: SplineOmics — SplineOmics-package","title":"Package Name: SplineOmics — SplineOmics-package","text":"R package SplineOmics finds significant features (hits) time-series -omics data using splines limma hypothesis testing. clusters hits based spline shape showing results summary HTML reports. detailed documentation, vignettes, examples, please visit [SplineOmics GitHub page](https://github.com/csbg/SplineOmics.git).","code":""},{"path":"/reference/SplineOmics-package.html","id":"key-functions-and-classes","dir":"Reference","previous_headings":"","what":"Key Functions and Classes","title":"Package Name: SplineOmics — SplineOmics-package","text":"- extract_data: Extracts data matrix Excel file. - create_splineomics: Creates SplineOmics object, contains arguments used several package functions. - explore_data: Performs exploratory data analysis data, outputs HTML report containg various plots, density plots correlation heatmaps. - screen_limma_hyperparams: Allows specify lists different hyperparameters test, degree freedom 2, 3, 4, adj.p-val thresholds, 0.1 0.05, tests specified different values limma spline hyperparameters semi-combinatorial way. - update_splineomics: Allows change values SplineOmics object, example observing outliers removed data (update data parameter). - run_limma_splines: Central function script, called screen_limma_hyperparams function can called get limma spline analysis results (p-values features (e.g. proteins)) hyperparameters, selected finally. - create_limma_report: Creates HTML report showing run_limma_splines results - cluster_hits: Clusters splines hits (significant features) based shape shows results plots HTML report. - download_enrichr_databases: Allows download Enrichr databases runnin clusterProfiler run_gsea function . - run_gsea: Runs clusterProfiler clustered hits using Enrichr databases.","code":""},{"path":"/reference/SplineOmics-package.html","id":"package-options","dir":"Reference","previous_headings":"","what":"Package Options","title":"Package Name: SplineOmics — SplineOmics-package","text":"None","code":""},{"path":"/reference/SplineOmics-package.html","id":"dependencies","dir":"Reference","previous_headings":"","what":"Dependencies","title":"Package Name: SplineOmics — SplineOmics-package","text":"- **ComplexHeatmap**: creating complex heatmaps advanced features. - **base64enc**: encoding/decoding base64. - **dendextend**: extending `dendrogram` objects R, allowing easier manipulation dendrograms. - **dplyr**: data manipulation. - **ggplot2**: creating elegant data visualizations using grammar graphics. - **ggrepel**: better label placement ggplot2. - ****: constructing paths project’s files. - **limma**: linear models microarray data. - **openxlsx**: reading, writing, editing xlsx files. - **patchwork**: combining multiple ggplot objects single plot. - **pheatmap**: creating pretty heatmaps. - **progress**: adding progress bars loops apply functions. - **purrr**: functional programming tools. - **rlang**: tools work core language features R R’s base types. - **scales**: scale functions visualization. - **tibble**: creating tidy data frames easy work . - **tidyr**: tidying data. - **zip**: combining files zip file. Optional dependencies dependencies necessary functions: - **edgeR**: preprocessing RNA-seq data run_limma_splines() fun. - **clusterProfiler**: run_gsea() function (gene set enrichment). - **rstudioapi**: open_tutorial() open_template() functions.","code":""},{"path":"/reference/SplineOmics-package.html","id":"authors","dir":"Reference","previous_headings":"","what":"Authors","title":"Package Name: SplineOmics — SplineOmics-package","text":"- [Thomas-Rauter](https://github.com/Thomas-Rauter) - Wrote package developed approach VSchaepertoens guidance nfortelny skafdasschaf. - [nfortelny](https://github.com/nfortelny) - Principal Investigator, provided guidance support. - [skafdasschaf](https://github.com/skafdasschaf) - Helped review code provided improvement suggestions. - [VSchaepertoens](https://github.com/VSchaepertoens) - Developed internal plotting function contributed exploratory data analysis overall approach.","code":""},{"path":"/reference/SplineOmics-package.html","id":"maintainer","dir":"Reference","previous_headings":"","what":"Maintainer","title":"Package Name: SplineOmics — SplineOmics-package","text":"- Name: Thomas Rauter - Email: thomas.rauter@plus.ac.","code":""},{"path":"/reference/SplineOmics-package.html","id":"license","dir":"Reference","previous_headings":"","what":"License","title":"Package Name: SplineOmics — SplineOmics-package","text":"- License: MIT","code":""},{"path":"/reference/SplineOmics-package.html","id":"useful-urls","dir":"Reference","previous_headings":"","what":"Useful URLs","title":"Package Name: SplineOmics — SplineOmics-package","text":"- [GitHub repo package](https://github.com/csbg/SplineOmics.git)","code":""},{"path":"/reference/SplineOmics-package.html","id":"additional-information","dir":"Reference","previous_headings":"","what":"Additional Information","title":"Package Name: SplineOmics — SplineOmics-package","text":"None","code":""},{"path":"/reference/add_feature_names.html","id":null,"dir":"Reference","previous_headings":"","what":"Add Feature Names to Data — add_feature_names","title":"Add Feature Names to Data — add_feature_names","text":"function assigns feature names rows dataframe based specified column another dataframe. column specified, assigns sequential numbers feature names.","code":""},{"path":"/reference/add_feature_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add Feature Names to Data — add_feature_names","text":"","code":"add_feature_names(data, clean_data, feature_name_columns)"},{"path":"/reference/add_feature_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add Feature Names to Data — add_feature_names","text":"data dataframe containing original data feature names. clean_data dataframe feature names added. feature_name_columns string specifying name feature columns `data`. `NA`, sequential numbers used feature names.","code":""},{"path":"/reference/add_feature_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add Feature Names to Data — add_feature_names","text":"`clean_data` dataframe updated row names.","code":""},{"path":"/reference/add_feature_names.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Add Feature Names to Data — add_feature_names","text":"function performs following operations: - Extracts feature names specified column `data`, ignoring `NA` values. - Ensures feature names unique match number rows `clean_data`. - Assigns feature names rows `clean_data`. - `feature_name_column` `NA`, assigns sequential numbers (1, 2, 3, etc.) feature names issues message.","code":""},{"path":"/reference/add_plot_to_html.html","id":null,"dir":"Reference","previous_headings":"","what":"Add Plot to HTML Content — add_plot_to_html","title":"Add Plot to HTML Content — add_plot_to_html","text":"function converts plot base64 image adds HTML content.","code":""},{"path":"/reference/add_plot_to_html.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add Plot to HTML Content — add_plot_to_html","text":"","code":"add_plot_to_html(html_content, plot_element, plots_size, section_index)"},{"path":"/reference/add_plot_to_html.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add Plot to HTML Content — add_plot_to_html","text":"html_content current HTML content character string. plot_element plot element converted base64. plots_size integer specifying height plot. section_index integer specifying section index.","code":""},{"path":"/reference/add_plot_to_html.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add Plot to HTML Content — add_plot_to_html","text":"updated HTML content character string.","code":""},{"path":"/reference/ask_user.html","id":null,"dir":"Reference","previous_headings":"","what":"Prompt the user with a yes/no question — ask_user","title":"Prompt the user with a yes/no question — ask_user","text":"function prompts user yes/question. user answers \"yes\" (case insensitive), code proceeds. user answers \"\" anything else, code stops.","code":""},{"path":"/reference/ask_user.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prompt the user with a yes/no question — ask_user","text":"","code":"ask_user(question)"},{"path":"/reference/ask_user.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prompt the user with a yes/no question — ask_user","text":"question string question ask user.","code":""},{"path":"/reference/ask_user.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prompt the user with a yes/no question — ask_user","text":"None.","code":""},{"path":"/reference/between_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Between Level Analysis — between_level","title":"Between Level Analysis — between_level","text":"Performs -level analysis using LIMMA compare specified levels within condition.","code":""},{"path":"/reference/between_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Between Level Analysis — between_level","text":"","code":"between_level( data, preprocess_rna_seq, normalization_fun, meta, design, spline_params, condition, compared_levels, padjust_method, feature_names )"},{"path":"/reference/between_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Between Level Analysis — between_level","text":"data matrix data values. preprocess_rna_seq Boolean specifying whether preprocess RNA seq normalization_fun Function normalizing RNA-seq raw-counts. meta dataframe containing metadata, including 'Time' column. design design formula matrix LIMMA analysis. spline_params list spline parameters analysis. condition character string specifying condition. compared_levels vector levels within condition compare. padjust_method character string specifying p-adjustment method. feature_names non-empty character vector feature names.","code":""},{"path":"/reference/between_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Between Level Analysis — between_level","text":"list containing top tables factor factor-time contrast.","code":""},{"path":[]},{"path":"/reference/bind_data_with_annotation.html","id":null,"dir":"Reference","previous_headings":"","what":"Bind Data with Annotation — bind_data_with_annotation","title":"Bind Data with Annotation — bind_data_with_annotation","text":"function converts matrix dataframe, adds row names first column, binds annotation data.","code":""},{"path":"/reference/bind_data_with_annotation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bind Data with Annotation — bind_data_with_annotation","text":"","code":"bind_data_with_annotation(data, annotation)"},{"path":"/reference/bind_data_with_annotation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bind Data with Annotation — bind_data_with_annotation","text":"data matrix containing numeric data. annotation dataframe containing annotation information.","code":""},{"path":"/reference/bind_data_with_annotation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bind Data with Annotation — bind_data_with_annotation","text":"dataframe `data` `annotation` combined, row names `data` first column named `feature_names`.","code":""},{"path":"/reference/build_cluster_hits_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build Cluster Hits Report — build_cluster_hits_report","title":"Build Cluster Hits Report — build_cluster_hits_report","text":"Generates HTML report clustered hits, including plots spline parameter details, table contents.","code":""},{"path":"/reference/build_cluster_hits_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build Cluster Hits Report — build_cluster_hits_report","text":"","code":"build_cluster_hits_report( header_section, plots, plots_sizes, level_headers_info, spline_params, adj_pthresholds, mode, report_info, output_file_path )"},{"path":"/reference/build_cluster_hits_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build Cluster Hits Report — build_cluster_hits_report","text":"header_section character string containing HTML header section. plots list ggplot2 plot objects. plots_sizes list integers specifying size plot. level_headers_info list header information level. spline_params list spline parameters. adj_pthresholds Float vector values level adj.p.tresh mode character string specifying mode ('isolated' 'integrated'). report_info named list containg report info fields. used email hotkey functionality. output_file_path character string specifying path save HTML report.","code":""},{"path":"/reference/build_cluster_hits_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build Cluster Hits Report — build_cluster_hits_report","text":"return value, called side effects.","code":""},{"path":[]},{"path":"/reference/build_create_gsea_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build GSEA Report — build_create_gsea_report","title":"Build GSEA Report — build_create_gsea_report","text":"Generates HTML report Gene Set Enrichment Analysis (GSEA) based provided plot data, header information, content. report includes sections level clustered hits, along table contents various plots.","code":""},{"path":"/reference/build_create_gsea_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build GSEA Report — build_create_gsea_report","text":"","code":"build_create_gsea_report( header_section, plots, plots_sizes, level_headers_info, report_info, output_file_path )"},{"path":"/reference/build_create_gsea_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build GSEA Report — build_create_gsea_report","text":"header_section string containing HTML content header section report. plots list plots included report. plots_sizes list sizes plots. level_headers_info list containing header information level clustered hits. report_info named list containg report info fields. used email hotkey functionality. output_file_path string specifying file path report saved.","code":""},{"path":"/reference/build_create_gsea_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build GSEA Report — build_create_gsea_report","text":"None. function generates writes HTML report specified output file path.","code":""},{"path":"/reference/build_create_gsea_report.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Build GSEA Report — build_create_gsea_report","text":"function first initializes HTML content provided header section placeholder table contents (TOC). iterates plots, generating sections level clustered hits processing individual plots. TOC inserted HTML content, finalized written specified output file.","code":""},{"path":"/reference/build_create_limma_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build Cluster Hits Report — build_create_limma_report","title":"Build Cluster Hits Report — build_create_limma_report","text":"Generates HTML report clustered hits, including plots spline parameter details, table contents.","code":""},{"path":"/reference/build_create_limma_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build Cluster Hits Report — build_create_limma_report","text":"","code":"build_create_limma_report( header_section, plots, plots_sizes, level_headers_info, report_info, output_file_path = here::here() )"},{"path":"/reference/build_create_limma_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build Cluster Hits Report — build_create_limma_report","text":"header_section character string containing HTML header section. plots list ggplot2 plot objects. plots_sizes list integers specifying size plot. level_headers_info list header information level. report_info named list containg report info fields. used email hotkey functionality. output_file_path character string specifying path save HTML report.","code":""},{"path":"/reference/build_create_limma_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build Cluster Hits Report — build_create_limma_report","text":"return value, called side effects.","code":""},{"path":[]},{"path":"/reference/build_explore_data_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build Explore Data Report — build_explore_data_report","title":"Build Explore Data Report — build_explore_data_report","text":"function generates HTML report containing header section, table contents, series plots. plot included report specified sizes.","code":""},{"path":"/reference/build_explore_data_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build Explore Data Report — build_explore_data_report","text":"","code":"build_explore_data_report( header_section, plots, plots_sizes, report_info, output_file_path )"},{"path":"/reference/build_explore_data_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build Explore Data Report — build_explore_data_report","text":"header_section string containing HTML content header section report. plots list ggplot objects representing plots included report. plots_sizes list sizes corresponding plot, defining dimensions used rendering plots. report_info named list containg report info fields. used email hotkey functionality. output_file_path string specifying file path HTML report saved.","code":""},{"path":"/reference/build_explore_data_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build Explore Data Report — build_explore_data_report","text":"None. function writes HTML content specified file.","code":""},{"path":"/reference/build_hyperparams_screen_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","title":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","text":"Constructs HTML report hyperparameter screening embedding plots respective sizes provided header section.","code":""},{"path":"/reference/build_hyperparams_screen_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","text":"","code":"build_hyperparams_screen_report( header_section, plots, plots_sizes, report_info, output_file_path )"},{"path":"/reference/build_hyperparams_screen_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","text":"header_section character string containing HTML header section. plots list ggplot2 plot objects. plots_sizes list integers specifying number rows plot. report_info named list containg report info fields. used email hotkey functionality. output_file_path character string specifying path save HTML report.","code":""},{"path":"/reference/build_hyperparams_screen_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","text":"return value, called side effects.","code":""},{"path":[]},{"path":"/reference/check_between_level_pattern.html","id":null,"dir":"Reference","previous_headings":"","what":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"function checks elements within list top tables contain element names match specified -level pattern.","code":""},{"path":"/reference/check_between_level_pattern.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"","code":"check_between_level_pattern(top_tables)"},{"path":"/reference/check_between_level_pattern.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"top_tables list element list containing named elements.","code":""},{"path":"/reference/check_between_level_pattern.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"list two elements: between_levels logical value indicating whether element names match -level pattern. index_with_pattern index first element `top_tables` names match -level pattern, NA match found.","code":""},{"path":"/reference/check_between_level_pattern.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"function iterates element `top_tables`. element list, checks names within inner list match pattern `\".+_vs_.+\"`. match found, function sets `between_levels` TRUE records index matching element. search stops first match.","code":""},{"path":"/reference/check_clustered_hits.html","id":null,"dir":"Reference","previous_headings":"","what":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","title":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","text":"function checks given dataframe `clustered_genes` contains required columns `gene` `cluster`. `gene` column must contain character strings length 1, `cluster` column must contain integers. condition met, function stops script produces informative error message.","code":""},{"path":"/reference/check_clustered_hits.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","text":"","code":"check_clustered_hits(levels_clustered_hits)"},{"path":"/reference/check_clustered_hits.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","text":"levels_clustered_hits list dataframes checked required format.","code":""},{"path":"/reference/check_clustered_hits.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","text":"function return value. stops error message conditions met.","code":""},{"path":"/reference/check_databases.html","id":null,"dir":"Reference","previous_headings":"","what":"Check Valid Databases Dataframe — check_databases","title":"Check Valid Databases Dataframe — check_databases","text":"function checks dataframe exactly three columns named DB, Geneset, Gene, columns must type character.","code":""},{"path":"/reference/check_databases.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check Valid Databases Dataframe — check_databases","text":"","code":"check_databases(databases)"},{"path":"/reference/check_databases.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check Valid Databases Dataframe — check_databases","text":"databases dataframe check.","code":""},{"path":"/reference/check_databases.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check Valid Databases Dataframe — check_databases","text":"None. function stops execution provides error message dataframe valid.","code":""},{"path":"/reference/check_genes.html","id":null,"dir":"Reference","previous_headings":"","what":"Check Valid Gene IDs — check_genes","title":"Check Valid Gene IDs — check_genes","text":"function checks whether character vector `genes` contains valid gene IDs. gene ID must consist solely alphabetic letters numbers.","code":""},{"path":"/reference/check_genes.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check Valid Gene IDs — check_genes","text":"","code":"check_genes(genes, max_index_overall = NA)"},{"path":"/reference/check_genes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check Valid Gene IDs — check_genes","text":"genes character vector containing gene IDs. max_index_overall integer, specifying highest index features across levels.","code":""},{"path":"/reference/check_genes.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check Valid Gene IDs — check_genes","text":"None. function stops execution provides error message vector meet criteria, including first offending element index.","code":""},{"path":"/reference/check_null_elements.html","id":null,"dir":"Reference","previous_headings":"","what":"Check for NULL Elements in Arguments — check_null_elements","title":"Check for NULL Elements in Arguments — check_null_elements","text":"function checks elements provided list arguments `NULL`. `NULL` elements found, stops execution returns informative error message.","code":""},{"path":"/reference/check_null_elements.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check for NULL Elements in Arguments — check_null_elements","text":"","code":"check_null_elements(args)"},{"path":"/reference/check_null_elements.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check for NULL Elements in Arguments — check_null_elements","text":"args list arguments check `NULL` elements.","code":""},{"path":"/reference/check_null_elements.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check for NULL Elements in Arguments — check_null_elements","text":"function return value. stops execution `NULL` elements found input list.","code":""},{"path":"/reference/check_params.html","id":null,"dir":"Reference","previous_headings":"","what":"Check Params List for Required Conditions — check_params","title":"Check Params List for Required Conditions — check_params","text":"function checks given list `params` contains allowed named elements. elements present, , must named exactly specified must contain correct data types: float, character, int, int, float. condition met, function stops script produces informative error message. `params` can also `NA`.","code":""},{"path":"/reference/check_params.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check Params List for Required Conditions — check_params","text":"","code":"check_params(params)"},{"path":"/reference/check_params.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check Params List for Required Conditions — check_params","text":"params list checked required conditions, `NA`.","code":""},{"path":"/reference/check_params.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check Params List for Required Conditions — check_params","text":"function return value. stops error message conditions met.","code":""},{"path":"/reference/check_splineomics_elements.html","id":null,"dir":"Reference","previous_headings":"","what":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","title":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","text":"function checks given object contains required named elements specified function type. element missing, stops script provides informative error message.","code":""},{"path":"/reference/check_splineomics_elements.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","text":"","code":"check_splineomics_elements(splineomics, func_type)"},{"path":"/reference/check_splineomics_elements.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","text":"splineomics object checked. func_type string specifying function type. can one \"cluster_hits\", \"create_limma_report\", \"run_limma_splines\", \"explore_data\"","code":""},{"path":"/reference/check_splineomics_elements.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","text":"None. Stops execution required element missing.","code":""},{"path":"/reference/clean_gene_symbols.html","id":null,"dir":"Reference","previous_headings":"","what":"Clean the Gene Symbols — clean_gene_symbols","title":"Clean the Gene Symbols — clean_gene_symbols","text":"function preprocesses vector gene names cleaning formatting . removes non-alphanumeric characters first block alphanumeric characters converts remaining characters uppercase.","code":""},{"path":"/reference/clean_gene_symbols.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Clean the Gene Symbols — clean_gene_symbols","text":"","code":"clean_gene_symbols(genes)"},{"path":"/reference/clean_gene_symbols.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Clean the Gene Symbols — clean_gene_symbols","text":"genes character vector containing gene names cleaned.","code":""},{"path":"/reference/clean_gene_symbols.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Clean the Gene Symbols — clean_gene_symbols","text":"character vector cleaned gene symbols (names) length input. cleaned names uppercase, invalid empty gene names replaced NA.","code":""},{"path":"/reference/cluster_hits.html","id":null,"dir":"Reference","previous_headings":"","what":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","title":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","text":"Performs clustering hits top tables generated differential expression analysis. function filters hits based adjusted p-value thresholds, extracts spline coefficients significant features, normalizes coefficients, applies hierarchical clustering. results, including clustering assignments normalized spline curves, saved specified directory compiled HTML report.","code":""},{"path":"/reference/cluster_hits.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","text":"","code":"cluster_hits( splineomics, genes, adj_pthresholds = c(0.05), clusters = c(\"auto\"), plot_info = list(y_axis_label = \"Value\", time_unit = \"min\", treatment_labels = NA, treatment_timepoints = NA), report_dir = here::here(), analysis_type = \"time_effect\", report = TRUE )"},{"path":"/reference/cluster_hits.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","text":"splineomics S3 object class `SplineOmics` contains necessary data parameters analysis, including: data: original expression dataset used differential expression analysis. meta: dataframe containing metadata corresponding data, must include 'Time' column columns specified conditions. design: character length 1 representing limma design formula. condition: Character length 1 specifying column name meta used define groups analysis. spline_params: list spline parameters analysis. meta_batch_column: character string specifying column name metadata used batch effect removal. meta_batch2_column: character string specifying second column name metadata used batch effect removal. limma_splines_result: list data frames, representing top table differential expression analysis, containing least 'adj.P.Val' expression data columns. genes character vector containing gene names features analyzed. adj_pthresholds Numeric vector p-value thresholds filtering hits top table. clusters Character integer vector specifying number clusters 'auto' automatic estimation. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.). report_dir Character string specifying directory path HTML report output files saved. analysis_type String specifying type limma results (three categories: time_effect, avrg_diff_conditions, interaction_condition_time ( see limma_result_categories.pdf inst/descriptions). report Boolean TRUE FALSE value specifing report generated.","code":""},{"path":"/reference/cluster_hits.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","text":"list element corresponds group factor contains clustering results, including `clustered_hits` data frame, hierarchical clustering object `hc`, `curve_values` data frame normalized spline curves, `top_table` cluster assignments.","code":""},{"path":[]},{"path":"/reference/control_inputs_create_gsea_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Control Inputs for GSEA Report — control_inputs_create_gsea_report","title":"Control Inputs for GSEA Report — control_inputs_create_gsea_report","text":"Validates inputs generating GSEA report, including clustered hits, genes, databases, parameters, plot titles, background genes.","code":""},{"path":"/reference/control_inputs_create_gsea_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Control Inputs for GSEA Report — control_inputs_create_gsea_report","text":"","code":"control_inputs_create_gsea_report( levels_clustered_hits, databases, params, plot_titles, background )"},{"path":"/reference/control_inputs_create_gsea_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Control Inputs for GSEA Report — control_inputs_create_gsea_report","text":"levels_clustered_hits list containing clustered hits various levels. databases list databases used GSEA analysis. params list parameters GSEA analysis. plot_titles character vector titles plots, length matching `levels_clustered_hits`. background character vector background genes NULL.","code":""},{"path":"/reference/control_inputs_extract_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Control Inputs for Extracting Data — control_inputs_extract_data","title":"Control Inputs for Extracting Data — control_inputs_extract_data","text":"function checks validity input data feature name column. ensures input data dataframe, feature name column specified correctly, contains valid data.","code":""},{"path":"/reference/control_inputs_extract_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Control Inputs for Extracting Data — control_inputs_extract_data","text":"","code":"control_inputs_extract_data(data, feature_name_columns)"},{"path":"/reference/control_inputs_extract_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Control Inputs for Extracting Data — control_inputs_extract_data","text":"data dataframe containing input data. feature_name_columns character vector specifying names feature name columns. columns must present dataframe data. `NA`, column checked.","code":""},{"path":"/reference/control_inputs_extract_data.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Control Inputs for Extracting Data — control_inputs_extract_data","text":"function performs following checks: - Ensures input data dataframe. - Checks feature name column single string exists data. - Ensures specified feature name column contain `NA` values. - Checks input dataframe empty. checks fail, function stops error message.","code":""},{"path":"/reference/create_enrichr_zip.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"function creates ZIP file containing directories level gene lists. directory contains text files cluster. ZIP file encoded base64 easy download.","code":""},{"path":"/reference/create_enrichr_zip.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"","code":"create_enrichr_zip(enrichr_format)"},{"path":"/reference/create_enrichr_zip.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"enrichr_format list formatted gene lists background gene list, typically output `prepare_gene_lists_for_enrichr`.","code":""},{"path":"/reference/create_enrichr_zip.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"base64-encoded string representing ZIP file.","code":""},{"path":"/reference/create_enrichr_zip.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"function creates temporary directory store files. level `enrichr_format$gene_lists`, creates directory named level. Within level directory, creates text file cluster, containing genes cluster. directories files added ZIP file, encoded base64.","code":""},{"path":"/reference/create_gsea_report_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","title":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","text":"function conducts Gene Set Enrichment Analysis (GSEA) using either clusterProfiler package. Afterwards, plots results. allows customization enrichment parameters, selection databases, optionally specifying custom plot title background gene list.","code":""},{"path":"/reference/create_gsea_report_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","text":"","code":"create_gsea_report_level( clustered_genes, databases, params = NA, plot_title = \"\", background = NULL )"},{"path":"/reference/create_gsea_report_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","text":"clustered_genes list dataframes two columns: first column contains standard gene symbol, second column contains integer specifying cluster. databases dataframe containing data downloaded Enrichr databases params list specifying clusterProfiler parameters enrichment analysis. plot_title optional string specifying title plot. provided, default title based analysis used. background optional list standard gene symbols used background enrichment analysis instead background chosen `enricher`. default empty list, implies use default background set enrichment tool.","code":""},{"path":"/reference/create_gsea_report_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","text":"object containing results Gene Set Enrichment Analysis, including plots generated analysis.","code":""},{"path":"/reference/create_limma_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a limma report — create_limma_report","title":"Create a limma report — create_limma_report","text":"Generates HTML report based results limma analysis splines. report includes various plots sections summarizing analysis results time effects, average differences conditions, interaction effects condition time.","code":""},{"path":"/reference/create_limma_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a limma report — create_limma_report","text":"","code":"create_limma_report(splineomics, adj_pthresh = 0.05, report_dir = here::here())"},{"path":"/reference/create_limma_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a limma report — create_limma_report","text":"splineomics S3 object class `SplineOmics` contains necessary data parameters analysis, including: limma_splines_result: list containing top tables differential expression analysis three different limma results. meta: data frame sample metadata. Must contain column \"Time\". condition: character string specifying column name metadata (meta) defines groups analysis. column contains levels \"exponential\" \"stationary\" phases, \"drug\" \"no_drug\" treatments. annotation: data frame containing feature information, gene protein names, associated expression data. report_info: list containing metadata analysis reporting purposes. adj_pthresh numeric value specifying adjusted p-value threshold significance. Default 0.05. Must > 0 < 1. report_dir string specifying directory report saved. Default current working directory.","code":""},{"path":"/reference/create_limma_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a limma report — create_limma_report","text":"list plots included generated HTML report.","code":""},{"path":"/reference/create_p_value_histogram.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a p-value histogram from a limma top_table — create_p_value_histogram","title":"Create a p-value histogram from a limma top_table — create_p_value_histogram","text":"function generates histogram unadjusted p-values limma top_table.","code":""},{"path":"/reference/create_p_value_histogram.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a p-value histogram from a limma top_table — create_p_value_histogram","text":"","code":"create_p_value_histogram( top_table, adj_pthresh = 0.05, title = \"P-Value Histogram\" )"},{"path":"/reference/create_p_value_histogram.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a p-value histogram from a limma top_table — create_p_value_histogram","text":"top_table data frame containing limma top_table column named `P.Value` unadjusted p-values. adj_pthresh numeric value adjusted p-value threshold (used function, included consistency). title character string title histogram.","code":""},{"path":"/reference/create_p_value_histogram.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a p-value histogram from a limma top_table — create_p_value_histogram","text":"ggplot2 object representing histogram unadjusted p-values.","code":""},{"path":"/reference/create_progress_bar.html","id":null,"dir":"Reference","previous_headings":"","what":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","text":"Creates progress bar tracking progress iterable task.","code":""},{"path":"/reference/create_progress_bar.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","text":"","code":"create_progress_bar(iterable, message = \"Processing\")"},{"path":"/reference/create_progress_bar.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","text":"iterable iterable object (e.g., list vector) whose length determines total number steps. message message display progress bar (default \"Processing\").","code":""},{"path":"/reference/create_progress_bar.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","text":"progress bar object 'progress' package.","code":""},{"path":[]},{"path":"/reference/create_spline_params.html","id":null,"dir":"Reference","previous_headings":"","what":"Create Spline Parameters — create_spline_params","title":"Create Spline Parameters — create_spline_params","text":"Generates spline parameters based configuration, metadata, condition, mode.","code":""},{"path":"/reference/create_spline_params.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create Spline Parameters — create_spline_params","text":"","code":"create_spline_params(spline_test_configs, index, meta, condition, mode)"},{"path":"/reference/create_spline_params.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create Spline Parameters — create_spline_params","text":"spline_test_configs configuration object spline tests. index Index spline configuration process. meta dataframe containing metadata. condition character string specifying condition. mode character string specifying mode.","code":""},{"path":"/reference/create_spline_params.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create Spline Parameters — create_spline_params","text":"list processed spline parameters.","code":""},{"path":[]},{"path":"/reference/create_splineomics.html","id":null,"dir":"Reference","previous_headings":"","what":"Create and update the SplineOmics object ===== — create_splineomics","title":"Create and update the SplineOmics object ===== — create_splineomics","text":"Creates SplineOmics object containing variables commonly used across multiple functions package.","code":""},{"path":"/reference/create_splineomics.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create and update the SplineOmics object ===== — create_splineomics","text":"","code":"create_splineomics( data, meta, condition, annotation = NULL, report_info = NULL, meta_batch_column = NULL, meta_batch2_column = NULL, feature_name_columns = NULL, design = NULL, spline_params = NULL, preprocess_rna_seq = FALSE, normalization_fun = NULL, padjust_method = \"BH\" )"},{"path":"/reference/create_splineomics.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create and update the SplineOmics object ===== — create_splineomics","text":"data actual omics data. meta Metadata associated omics data. condition condition variable. annotation dataframe feature descriptions data (optional). report_info list containing report information omics data type, data description, data collection date, analyst name, contact info, project name (optional). meta_batch_column Column meta batch information (optional). meta_batch2_column Column secondary meta batch information (optional). feature_name_columns Character vector containing column names annotation info describe features. argument used specify HTML report exactly feature names displayed individual spline plot created. Use vector used create row headers data matrix! design design matrix similar object (optional). spline_params Parameters spline functions (optional). preprocess_rna_seq Boolean specifying whether preprocess RNA seq normalization_fun Function used normalizing RNA-seq. Must take input y : y <- edgeR::DGEList(counts = raw_counts) output y normalized counts. padjust_method Method p-value adjustment, one \"none\", \"BH\", \"\", \"holm\", \"bonferroni\", \"hochberg\", \"hommel\". Defaults \"BH\" (Benjamini-Hochberg).","code":""},{"path":"/reference/create_splineomics.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create and update the SplineOmics object ===== — create_splineomics","text":"SplineOmics object.","code":""},{"path":"/reference/create_splineomics.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Create and update the SplineOmics object ===== — create_splineomics","text":"Description ———– Contains functions create update SplineOmics object. object used collect function arguments, equivalent one exported function SplineOmics package. Additionally Functions ——— - create_splineomics: Create SplineOmics object - update_splineomics: Add additional arguments SplineOmics object overwrite existing arguments. Classes ——- None Notes —– None Create SplineOmics object","code":""},{"path":"/reference/create_toc.html","id":null,"dir":"Reference","previous_headings":"","what":"Create Table of Contents — create_toc","title":"Create Table of Contents — create_toc","text":"Creates HTML content Table Contents.","code":""},{"path":"/reference/create_toc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create Table of Contents — create_toc","text":"","code":"create_toc()"},{"path":"/reference/create_toc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create Table of Contents — create_toc","text":"string containing HTML Table Contents.","code":""},{"path":"/reference/create_volcano_plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a Volcano Plot — create_volcano_plot","title":"Create a Volcano Plot — create_volcano_plot","text":"function creates volcano plot limma top table, plotting log fold changes negative log10 adjusted p-values.","code":""},{"path":"/reference/create_volcano_plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a Volcano Plot — create_volcano_plot","text":"","code":"create_volcano_plot(top_table, adj_pthresh, compared_levels)"},{"path":"/reference/create_volcano_plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a Volcano Plot — create_volcano_plot","text":"top_table data frame limma containing 'logFC' 'adj.P.Val' columns. adj_pthresh numeric value adjusted p-value threshold. compared_levels character vector length 2 specifying compared levels.","code":""},{"path":"/reference/create_volcano_plot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a Volcano Plot — create_volcano_plot","text":"ggplot object representing volcano plot.","code":""},{"path":"/reference/dbs_to_term2genes.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert Database File to TERM2GENE List — dbs_to_term2genes","title":"Convert Database File to TERM2GENE List — dbs_to_term2genes","text":"Reads specified .tsv file containing information databases, gene sets, genes. file three columns: 'DB' database names, Geneset' gene set identifiers, 'Gene' gene names. function organizes information nested list. top-level element corresponds unique database, within , gene sets map lists associated genes.","code":""},{"path":"/reference/dbs_to_term2genes.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert Database File to TERM2GENE List — dbs_to_term2genes","text":"","code":"dbs_to_term2genes(databases)"},{"path":"/reference/dbs_to_term2genes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert Database File to TERM2GENE List — dbs_to_term2genes","text":"databases dataframe, containing three columns DB, Geneset, gene. dataframe contains databases downloaded Enrichr SplineOmics package function: download_enrichr_databases.","code":""},{"path":"/reference/dbs_to_term2genes.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert Database File to TERM2GENE List — dbs_to_term2genes","text":"nested list first level names corresponds database names ('DB'), second level gene sets ('Geneset'), innermost lists contain gene names ('Gene') associated gene set.","code":""},{"path":"/reference/define_html_styles.html","id":null,"dir":"Reference","previous_headings":"","what":"Define HTML Styles — define_html_styles","title":"Define HTML Styles — define_html_styles","text":"Defines CSS styles section headers Table Contents (TOC) entries used GSEA report generation.","code":""},{"path":"/reference/define_html_styles.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Define HTML Styles — define_html_styles","text":"","code":"define_html_styles()"},{"path":"/reference/define_html_styles.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Define HTML Styles — define_html_styles","text":"list containing styles section headers TOC entries.","code":""},{"path":"/reference/design2design_matrix.html","id":null,"dir":"Reference","previous_headings":"","what":"Create Design Matrix for Splines — design2design_matrix","title":"Create Design Matrix for Splines — design2design_matrix","text":"function generates design matrix using spline parameters metadata. accommodates B-splines natural cubic splines based provided spline type parameters.","code":""},{"path":"/reference/design2design_matrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create Design Matrix for Splines — design2design_matrix","text":"","code":"design2design_matrix(meta, spline_params, level_index, design)"},{"path":"/reference/design2design_matrix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create Design Matrix for Splines — design2design_matrix","text":"meta dataframe containing metadata, including time column. spline_params list containing spline parameters. list can include `dof` (degrees freedom), `knots`, `bknots` (boundary knots), `spline_type`, `degree`. level_index integer representing current level index design matrix generated. design character string representing design formula used generating model matrix.","code":""},{"path":"/reference/design2design_matrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create Design Matrix for Splines — design2design_matrix","text":"design matrix constructed using specified spline parameters design formula.","code":""},{"path":"/reference/determine_analysis_mode.html","id":null,"dir":"Reference","previous_headings":"","what":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","title":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","text":"function determines whether level analyzed isolation together based design formula. design formula includes interaction terms involving factor experiment, analysis mode considered integrated (together). Otherwise, considered isolated.","code":""},{"path":"/reference/determine_analysis_mode.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","text":"","code":"determine_analysis_mode(design, factor_column)"},{"path":"/reference/determine_analysis_mode.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","text":"design character string representing design formula used generating model matrix. factor_column character string representing column name factor experiment metadata.","code":""},{"path":"/reference/determine_analysis_mode.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","text":"character string indicating analysis mode, either \"integrated\" design formula involves interaction terms factor experiment, \"isolated\" otherwise.","code":""},{"path":"/reference/download_enrichr_databases.html","id":null,"dir":"Reference","previous_headings":"","what":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","title":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","text":"function downloads gene sets specified Enrichr databases saves specified output directory .tsv file. file named timestamp ensure uniqueness.","code":""},{"path":"/reference/download_enrichr_databases.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","text":"","code":"download_enrichr_databases(gene_set_lib, output_dir = here::here())"},{"path":"/reference/download_enrichr_databases.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","text":"gene_set_lib character vector database names download Enrichr. output_dir character string specifying output directory .tsv file saved. Defaults current working directory.","code":""},{"path":"/reference/download_enrichr_databases.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","text":"function return value saves .tsv file specified directory containing gene sets specified Enrichr databases.","code":""},{"path":"/reference/encode_df_to_base64.html","id":null,"dir":"Reference","previous_headings":"","what":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","title":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","text":"function takes dataframe input returns base64 encoded CSV object. encoded object can embedded HTML document directly, button download file without pointing local file.","code":""},{"path":"/reference/encode_df_to_base64.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","text":"","code":"encode_df_to_base64(df, report_type = NA)"},{"path":"/reference/encode_df_to_base64.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","text":"df dataframe encoded. report_type (Optional) string specifying report generation function called. Generates different Excel sheet names based report_type.","code":""},{"path":"/reference/encode_df_to_base64.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","text":"character string containing base64 encoded CSV data.","code":""},{"path":"/reference/enrichr_get_genesets.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Enrichr Gene Sets — enrichr_get_genesets","title":"Get Enrichr Gene Sets — enrichr_get_genesets","text":"function downloads gene sets specified Enrichr databases. returns list element list corresponding database, element containing vector human gene symbols gene set.","code":""},{"path":"/reference/enrichr_get_genesets.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Enrichr Gene Sets — enrichr_get_genesets","text":"","code":"enrichr_get_genesets(databases)"},{"path":"/reference/enrichr_get_genesets.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Enrichr Gene Sets — enrichr_get_genesets","text":"databases character vector database names download Enrichr.","code":""},{"path":"/reference/enrichr_get_genesets.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Enrichr Gene Sets — enrichr_get_genesets","text":"named list gene sets specified Enrichr databases. database represented list, gene set names list names vectors human gene symbols list elements.","code":""},{"path":"/reference/ensure_clusterProfiler.html","id":null,"dir":"Reference","previous_headings":"","what":"Ensure 'clusterProfiler' is installed and loaded — ensure_clusterProfiler","title":"Ensure 'clusterProfiler' is installed and loaded — ensure_clusterProfiler","text":"function checks 'clusterProfiler' package installed. , prompts user choose whether install automatically, install manually, cancel operation. installed, package loaded use.","code":""},{"path":"/reference/ensure_clusterProfiler.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Ensure 'clusterProfiler' is installed and loaded — ensure_clusterProfiler","text":"","code":"ensure_clusterProfiler()"},{"path":"/reference/explore_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Exploratory Plots — explore_data","title":"Generate Exploratory Plots — explore_data","text":"function takes data matrix, checks validity, generates list exploratory plots including density plots, boxplots, PCA plots, MDS plots, variance explained plots, violin plots.","code":""},{"path":"/reference/explore_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Exploratory Plots — explore_data","text":"","code":"explore_data(splineomics, report_dir = here::here(), report = TRUE)"},{"path":"/reference/explore_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Exploratory Plots — explore_data","text":"splineomics SplineOmics object, containing data, meta, condition, report_info, meta_batch_column, meta_batch2_column; report_dir non-empty string specifying report directory. report Boolean TRUE FALSE value, specifying report generated . report generated per default, plots plot objects inside R desired, argument can set FALSE.","code":""},{"path":"/reference/explore_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Exploratory Plots — explore_data","text":"list ggplot objects representing various exploratory plots.","code":""},{"path":"/reference/extract_data.html","id":null,"dir":"Reference","previous_headings":"","what":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","title":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","text":"function takes dataframe identifies rectangular quadratic area containing numeric data, starting first occurrence 6x6 block numeric values. extracts area matrix, ensuring row contains numeric values. Rows NA values removed resulting matrix.","code":""},{"path":"/reference/extract_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","text":"","code":"extract_data(data, feature_name_columns = NA, user_prompt = TRUE)"},{"path":"/reference/extract_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","text":"data dataframe loaded tabular file, potentially containing rectangular quadratic area numeric data amidst values. feature_name_columns (Optional) character vector, specifying columns dataframe data, used construct feature names. ommited, feature names just numbers (stored characters) starting 1 (1, 2, 3, etc.) user_prompt Boolean specifying whether user prompt correct format input data shown.","code":""},{"path":"/reference/extract_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","text":"numeric matrix row headers appropriate column names.","code":""},{"path":"/reference/flatten_spline_configs.html","id":null,"dir":"Reference","previous_headings":"","what":"Flatten Spline Configurations — flatten_spline_configs","title":"Flatten Spline Configurations — flatten_spline_configs","text":"Flattens formats spline configurations list formatted strings.","code":""},{"path":"/reference/flatten_spline_configs.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Flatten Spline Configurations — flatten_spline_configs","text":"","code":"flatten_spline_configs(spline_configs)"},{"path":"/reference/flatten_spline_configs.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Flatten Spline Configurations — flatten_spline_configs","text":"spline_configs list spline configuration objects.","code":""},{"path":"/reference/flatten_spline_configs.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Flatten Spline Configurations — flatten_spline_configs","text":"list formatted strings representing spline configuration.","code":""},{"path":"/reference/format_text.html","id":null,"dir":"Reference","previous_headings":"","what":"Format text — format_text","title":"Format text — format_text","text":"function takes character vector `text` splits individual characters. iterates characters builds lines exceeding specified character limit (default 70). Newlines inserted lines using `
` tag, suitable HTML display.","code":""},{"path":"/reference/format_text.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Format text — format_text","text":"","code":"format_text(text)"},{"path":"/reference/format_text.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Format text — format_text","text":"text character vector formatted.","code":""},{"path":"/reference/format_text.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Format text — format_text","text":"character vector formatted text containing line breaks.","code":""},{"path":"/reference/gen_composite_spline_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Composite Spline Plots — gen_composite_spline_plots","title":"Generate Composite Spline Plots — gen_composite_spline_plots","text":"Creates composite spline plots significant non-significant features across multiple levels within condition. One half one condition comparison HTML (composite spline plots one 'condition' inside one condition comparison)","code":""},{"path":"/reference/gen_composite_spline_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Composite Spline Plots — gen_composite_spline_plots","text":"","code":"gen_composite_spline_plots( internal_combos, datas, metas, spline_test_configs, time_unit_label )"},{"path":"/reference/gen_composite_spline_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Composite Spline Plots — gen_composite_spline_plots","text":"internal_combos list containing combinations top tables. datas list matrices. metas list metadata corresponding data matrices. spline_test_configs configuration object spline tests. time_unit_label character string specifying time unit label plots.","code":""},{"path":"/reference/gen_composite_spline_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Composite Spline Plots — gen_composite_spline_plots","text":"list containing composite spline plots lengths.","code":""},{"path":[]},{"path":"/reference/gen_hitcomp_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Hit Comparison Plots — gen_hitcomp_plots","title":"Generate Hit Comparison Plots — gen_hitcomp_plots","text":"Generates Venn heatmap barplot given combination pair top tables.","code":""},{"path":"/reference/gen_hitcomp_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Hit Comparison Plots — gen_hitcomp_plots","text":"","code":"gen_hitcomp_plots(combo_pair)"},{"path":"/reference/gen_hitcomp_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Hit Comparison Plots — gen_hitcomp_plots","text":"combo_pair list containing two combinations top tables.","code":""},{"path":"/reference/gen_hitcomp_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Hit Comparison Plots — gen_hitcomp_plots","text":"list containing Venn heatmap plot, number hits divided 16, barplot, length indicator barplot.","code":""},{"path":[]},{"path":"/reference/generate_and_write_html.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate and Write HTML Report — generate_and_write_html","title":"Generate and Write HTML Report — generate_and_write_html","text":"function generates HTML report inserting table contents, embedding necessary JavaScript files, writing final HTML content specified output file.","code":""},{"path":"/reference/generate_and_write_html.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate and Write HTML Report — generate_and_write_html","text":"","code":"generate_and_write_html(toc, html_content, report_info, output_file_path)"},{"path":"/reference/generate_and_write_html.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate and Write HTML Report — generate_and_write_html","text":"toc string containing table contents HTML format. html_content string containing main HTML content placeholder table contents. report_info list containing report information `contact_info` `analyst_name`. output_file_path string specifying path final HTML file written.","code":""},{"path":"/reference/generate_avrg_diff_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","title":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","text":"Creates p-value histograms volcano plots condition average difference conditions. function used internally `create_limma_report` function.","code":""},{"path":"/reference/generate_avrg_diff_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","text":"","code":"generate_avrg_diff_plots(avrg_diff_conditions, adj_pthresh)"},{"path":"/reference/generate_avrg_diff_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","text":"avrg_diff_conditions list top tables LIMMA analysis representing average difference conditions. adj_pthresh numeric value specifying adjusted p-value threshold significance.","code":""},{"path":"/reference/generate_avrg_diff_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","text":"list containing plots sizes, well section header information.","code":""},{"path":"/reference/generate_explore_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate exploratory plots — generate_explore_plots","title":"Generate exploratory plots — generate_explore_plots","text":"function generates various exploratory plots including density plots, box plots, violin plots, PCA plots, correlation heatmaps based provided data metadata.","code":""},{"path":"/reference/generate_explore_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate exploratory plots — generate_explore_plots","text":"","code":"generate_explore_plots(data, meta, condition)"},{"path":"/reference/generate_explore_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate exploratory plots — generate_explore_plots","text":"data data frame matrix containing data plotted. meta data frame containing metadata associated data. condition string specifying column metadata contains condition grouping variable.","code":""},{"path":"/reference/generate_explore_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate exploratory plots — generate_explore_plots","text":"list containing two elements: plots list ggplot objects representing generated plots. plots_sizes vector numeric values indicating sizes corresponding plots.","code":""},{"path":"/reference/generate_interaction_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","title":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","text":"Creates p-value histograms interaction condition interaction condition time. function used internally `create_limma_report` function.","code":""},{"path":"/reference/generate_interaction_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","text":"","code":"generate_interaction_plots(interaction_condition_time, adj_pthresh)"},{"path":"/reference/generate_interaction_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","text":"interaction_condition_time list top tables LIMMA analysis representing interaction effects condition time. adj_pthresh numeric value specifying adjusted p-value threshold significance.","code":""},{"path":"/reference/generate_interaction_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","text":"list containing plots sizes, well section header information.","code":""},{"path":"/reference/generate_report_html.html","id":null,"dir":"Reference","previous_headings":"","what":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","text":"Generates HTML report provided plots, spline parameters, report information.","code":""},{"path":"/reference/generate_report_html.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","text":"","code":"generate_report_html( plots, plots_sizes, report_info, data = NULL, meta = NA, topTables = NA, enrichr_format = NA, level_headers_info = NA, spline_params = NA, adj_pthresholds = NA, report_type = \"explore_data\", feature_name_columns = NA, analysis_type = NA, mode = NA, filename = \"report\", timestamp = format(Sys.time(), \"%d_%m_%Y-%H_%M_%S\"), report_dir = here::here() )"},{"path":"/reference/generate_report_html.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","text":"plots list ggplot2 plot objects. plots_sizes list integers specifying size plot. report_info named list containing report information. data dataframe list dataframes, containing data directly embedded HTML report downloading. meta dataframe, containing metadata directly embedded HTML report downloading. topTables List limma topTables enrichr_format List, containing two lists: gene list list background genes. level_headers_info list header information level. spline_params list spline parameters, dof type. adj_pthresholds Numeric vector values adj.p.tresholds level. report_type character string specifying report type ('screen_limma_hyperparams' 'cluster_hits'). feature_name_columns Character vector column names annotation information, columns containing gene names. column names used put info HTML reports descriptions individual spline plots created. descriptions can made several column values, specific columns stated HTML report top (e.g gene_uniprotID). analysis_type One strings \"time_effect\", \"avrg_diff_conditions\" , \"interaction_condition_time\". represent three different outputs limma analysis. info 3 \"categories\", see package dir inst/ descriptions/limma_result_categories.pdf. mode character string specifying mode ('isolated' 'integrated'). filename character string specifying filename report. timestamp timestamp include report filename. report_dir character string specifying report directory.","code":""},{"path":"/reference/generate_report_html.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","text":"return value, called side effects.","code":""},{"path":[]},{"path":"/reference/generate_reports.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Reports — generate_reports","title":"Generate Reports — generate_reports","text":"Builds HTML reports pairwise hyperparameter combination comparisons.","code":""},{"path":"/reference/generate_reports.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Reports — generate_reports","text":"","code":"generate_reports(combo_pair_plots, report_info, report_dir, timestamp)"},{"path":"/reference/generate_reports.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Reports — generate_reports","text":"combo_pair_plots list plots pair combinations. report_info object containing report information. report_dir non-empty string specifying report directory. timestamp timestamp include reports.","code":""},{"path":"/reference/generate_reports.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Reports — generate_reports","text":"return value, called side effects.","code":""},{"path":"/reference/generate_reports_meta.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Reports Metadata — generate_reports_meta","title":"Generate Reports Metadata — generate_reports_meta","text":"Generates metadata table LIMMA hyperparameter screen reports saves HTML file custom styling.","code":""},{"path":"/reference/generate_reports_meta.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Reports Metadata — generate_reports_meta","text":"","code":"generate_reports_meta( datas_descr, designs, modes, spline_test_configs, report_dir, timestamp )"},{"path":"/reference/generate_reports_meta.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Reports Metadata — generate_reports_meta","text":"datas_descr description object data. designs list design matrices. modes character vector containing 'isolated' 'integrated'. spline_test_configs configuration object spline tests. report_dir non-empty string specifying report directory. timestamp timestamp include report filename.","code":""},{"path":"/reference/generate_reports_meta.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Reports Metadata — generate_reports_meta","text":"return value, called side effects.","code":""},{"path":"/reference/generate_section_content.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Section Content — generate_section_content","title":"Generate Section Content — generate_section_content","text":"Generates HTML content section, including headers enrichment results.","code":""},{"path":"/reference/generate_section_content.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Section Content — generate_section_content","text":"","code":"generate_section_content( section_info, index, toc, html_content, section_header_style, toc_style )"},{"path":"/reference/generate_section_content.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Section Content — generate_section_content","text":"section_info list containing information section. index index current section. toc current state Table Contents. html_content current state HTML content. section_header_style CSS style section headers. toc_style CSS style TOC entries.","code":""},{"path":"/reference/generate_section_content.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Section Content — generate_section_content","text":"list updated HTML content TOC.","code":""},{"path":"/reference/generate_time_effect_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Plots for Time Effect — generate_time_effect_plots","title":"Generate Plots for Time Effect — generate_time_effect_plots","text":"Creates p-value histograms time effect LIMMA analysis. function used internally `create_limma_report` function.","code":""},{"path":"/reference/generate_time_effect_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Plots for Time Effect — generate_time_effect_plots","text":"","code":"generate_time_effect_plots(time_effect, adj_pthresh)"},{"path":"/reference/generate_time_effect_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Plots for Time Effect — generate_time_effect_plots","text":"time_effect list top tables LIMMA analysis representing time effects. adj_pthresh numeric value specifying adjusted p-value threshold significance.","code":""},{"path":"/reference/generate_time_effect_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Plots for Time Effect — generate_time_effect_plots","text":"list containing plots sizes, well section header information.","code":""},{"path":"/reference/get_curve_values.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate Curve Values Based on Top Table Filter — get_curve_values","title":"Calculate Curve Values Based on Top Table Filter — get_curve_values","text":"function filters entries given top table based adjusted p-value threshold, performs spline interpolation using specified degrees freedom, calculates curve values selected entries predefined time points. function internal exported.","code":""},{"path":"/reference/get_curve_values.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate Curve Values Based on Top Table Filter — get_curve_values","text":"","code":"get_curve_values(top_table, level, meta, condition, spline_params, mode)"},{"path":"/reference/get_curve_values.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate Curve Values Based on Top Table Filter — get_curve_values","text":"top_table data frame containing data column adjusted p-values expression averages indicate number degrees freedom. level specific level condition filter metadata. meta Metadata containing time points conditions. condition name condition column metadata filter . spline_params list spline parameters analysis. mode character string specifying mode ('isolated' 'integrated').","code":""},{"path":"/reference/get_curve_values.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate Curve Values Based on Top Table Filter — get_curve_values","text":"list containing two elements: `curve_values`, data frame curve values filtered entry, `smooth_timepoints`, time points curves evaluated.","code":""},{"path":"/reference/get_explore_plots_explanations.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Plot Explanations — get_explore_plots_explanations","title":"Get Plot Explanations — get_explore_plots_explanations","text":"function returns vector text explanations various types plots. explanations used HTML reports describe plots.","code":""},{"path":"/reference/get_explore_plots_explanations.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Plot Explanations — get_explore_plots_explanations","text":"","code":"get_explore_plots_explanations()"},{"path":"/reference/get_explore_plots_explanations.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Plot Explanations — get_explore_plots_explanations","text":"character vector containing explanations different plot types.","code":""},{"path":"/reference/get_explore_plots_explanations.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Plot Explanations — get_explore_plots_explanations","text":"explanations cover variety plots, including density plots, boxplots, violin plots, mean time correlation plots, lag-1 differences plots, first lag autocorrelation plots, coefficient variation (CV) plots, PCA plots, PCA variance explained plots, MDS plots, correlation heatmaps. explanation provides insights plot shows interpret .","code":""},{"path":"/reference/get_header_section.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Header Section — get_header_section","title":"Get Header Section — get_header_section","text":"Generates HTML header section report, including title, header text, logo. section also includes styling table HTML elements.","code":""},{"path":"/reference/get_header_section.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Header Section — get_header_section","text":"","code":"get_header_section(title, header_text, report_type, feature_names_formula)"},{"path":"/reference/get_header_section.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Header Section — get_header_section","text":"title string specifying title HTML document. header_text string specifying text displayed header report. report_type character specifying type HTML report. feature_names_formula String describing columns annotation info, gene uniprotID, used construct description individual spline plots. placed beginning output HTML reports.","code":""},{"path":"/reference/get_header_section.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Header Section — get_header_section","text":"string containing HTML header section.","code":""},{"path":"/reference/get_header_section.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Header Section — get_header_section","text":"function checks `DEVTOOLS_LOAD` environment variable determine path logo image. logo image converted base64 data URI included HTML. header section includes styles tables, table cells, header elements ensure proper formatting alignment.","code":""},{"path":"/reference/get_level_hit_indices.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Hit Indices for a Specific Level — get_level_hit_indices","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"function retrieves unique feature indices list -level top tables specified level, based adjusted p-value thresholds.","code":""},{"path":"/reference/get_level_hit_indices.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"","code":"get_level_hit_indices(between_level_top_tables, level, adj_pthresholds)"},{"path":"/reference/get_level_hit_indices.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"between_level_top_tables list data frames containing -level top tables. level string specifying level search within names data frames. adj_pthresholds numeric vector adjusted p-value thresholds data frame `between_level_top_tables`.","code":""},{"path":"/reference/get_level_hit_indices.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"vector unique feature indices meet adjusted p-value threshold criteria specified level.","code":""},{"path":"/reference/get_level_hit_indices.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"function iterates data frame `between_level_top_tables`. data frame whose name contains specified level (case insensitive), identifies rows adjusted p-value corresponding threshold. function extracts feature indices rows compiles unique list indices.","code":""},{"path":"/reference/get_limma_combos_results.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate LIMMA Combination Results — get_limma_combos_results","title":"Generate LIMMA Combination Results — get_limma_combos_results","text":"Computes results various combinations data, design matrices, spline configurations using LIMMA method.","code":""},{"path":"/reference/get_limma_combos_results.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate LIMMA Combination Results — get_limma_combos_results","text":"","code":"get_limma_combos_results( datas, metas, designs, modes, condition, spline_test_configs, feature_names, adj_pthresholds, padjust_method )"},{"path":"/reference/get_limma_combos_results.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate LIMMA Combination Results — get_limma_combos_results","text":"datas list matrices. metas list metadata corresponding data matrices. designs list design matrices. modes character vector containing 'isolated' 'integrated'. condition single character string specifying condition. spline_test_configs configuration object spline tests. feature_names character vector feature names. adj_pthresholds numeric vector elements > 0 < 1. padjust_method single character string specifying p-adjustment method.","code":""},{"path":"/reference/get_limma_combos_results.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate LIMMA Combination Results — get_limma_combos_results","text":"list results combination data, design, spline configuration.","code":""},{"path":"/reference/get_spline_params_info.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Spline Parameters Info — get_spline_params_info","title":"Get Spline Parameters Info — get_spline_params_info","text":"function retrieves spline parameters information given index. ensures spline parameters valid constructs HTML string describing spline parameters.","code":""},{"path":"/reference/get_spline_params_info.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Spline Parameters Info — get_spline_params_info","text":"","code":"get_spline_params_info(spline_params, j)"},{"path":"/reference/get_spline_params_info.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Spline Parameters Info — get_spline_params_info","text":"spline_params list containing spline parameters. list include elements: `spline_type`, `degree`, `dof`, `knots`, `bknots`. j integer specifying index spline parameters retrieve.","code":""},{"path":"/reference/get_spline_params_info.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Spline Parameters Info — get_spline_params_info","text":"character string containing HTML-formatted information spline parameters specified index.","code":""},{"path":"/reference/get_spline_params_info.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Spline Parameters Info — get_spline_params_info","text":"function checks spline parameters `NULL` length greater equal specified index `j`. parameter invalid missing, sets parameter `NA`. constructs HTML string describing spline parameters, including spline type, degree, degrees freedom (DoF), knots, boundary knots.","code":""},{"path":"/reference/hc_add.html","id":null,"dir":"Reference","previous_headings":"","what":"Add Data to Hit Comparison Object — hc_add","title":"Add Data to Hit Comparison Object — hc_add","text":"Adds new entry hit comparison object specified condition.","code":""},{"path":"/reference/hc_add.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add Data to Hit Comparison Object — hc_add","text":"","code":"hc_add(hc_obj, top_table, params_id, condition = 1, threshold = 0.05)"},{"path":"/reference/hc_add.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add Data to Hit Comparison Object — hc_add","text":"hc_obj object class \"hitcomp\". top_table dataframe containing top table data. params_id character string identifying parameters (max length 70). condition integer (1 2) specifying condition data belongs. threshold numeric value specifying adjusted p-value threshold.","code":""},{"path":"/reference/hc_add.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add Data to Hit Comparison Object — hc_add","text":"updated hit comparison object.","code":""},{"path":"/reference/hc_barplot.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Barplot for Hit Comparison Object — hc_barplot","title":"Generate Barplot for Hit Comparison Object — hc_barplot","text":"Creates barplot visualize number significant features parameter set hit comparison object.","code":""},{"path":"/reference/hc_barplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Barplot for Hit Comparison Object — hc_barplot","text":"","code":"hc_barplot(hc_obj)"},{"path":"/reference/hc_barplot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Barplot for Hit Comparison Object — hc_barplot","text":"hc_obj object class \"hitcomp\" containing hit data two conditions.","code":""},{"path":"/reference/hc_barplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Barplot for Hit Comparison Object — hc_barplot","text":"ggplot2 object representing barplot.","code":""},{"path":[]},{"path":"/reference/hc_new.html","id":null,"dir":"Reference","previous_headings":"","what":"Create New Hit Comparison Object — hc_new","title":"Create New Hit Comparison Object — hc_new","text":"Creates new hit comparison object specified condition names.","code":""},{"path":"/reference/hc_new.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create New Hit Comparison Object — hc_new","text":"","code":"hc_new(cond1name = \"Condition 1\", cond2name = \"Condition 2\")"},{"path":"/reference/hc_new.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create New Hit Comparison Object — hc_new","text":"cond1name character string first condition name (max length 25). cond2name character string second condition name (max length 25).","code":""},{"path":"/reference/hc_new.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create New Hit Comparison Object — hc_new","text":"object class \"hitcomp\" containing empty data lists condition names.","code":""},{"path":"/reference/hc_vennheatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Venn Heatmap — hc_vennheatmap","title":"Generate Venn Heatmap — hc_vennheatmap","text":"Creates Venn heatmap visualize overlap hits two conditions stored hit comparison object.","code":""},{"path":"/reference/hc_vennheatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Venn Heatmap — hc_vennheatmap","text":"","code":"hc_vennheatmap(hc_obj)"},{"path":"/reference/hc_vennheatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Venn Heatmap — hc_vennheatmap","text":"hc_obj object class \"hitcomp\" containing hit data two conditions.","code":""},{"path":"/reference/hc_vennheatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Venn Heatmap — hc_vennheatmap","text":"list containing Venn heatmap plot number hits.","code":""},{"path":[]},{"path":"/reference/hierarchical_clustering.html","id":null,"dir":"Reference","previous_headings":"","what":"Hierarchical Clustering of Curve Values — hierarchical_clustering","title":"Hierarchical Clustering of Curve Values — hierarchical_clustering","text":"Performs hierarchical clustering given curve values. can automatically determine optimal number clusters using silhouette analysis use specified number. function adjusts provided top_table cluster assignments.","code":""},{"path":"/reference/hierarchical_clustering.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Hierarchical Clustering of Curve Values — hierarchical_clustering","text":"","code":"hierarchical_clustering(curve_values, k, smooth_timepoints, top_table)"},{"path":"/reference/hierarchical_clustering.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Hierarchical Clustering of Curve Values — hierarchical_clustering","text":"curve_values matrix data frame curve values cluster. k number clusters use \"auto\" automatically determine optimal number using silhouette width analysis. smooth_timepoints Numeric vector time points corresponding columns curve_values. top_table Data frame updated cluster assignments.","code":""},{"path":"/reference/hierarchical_clustering.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Hierarchical Clustering of Curve Values — hierarchical_clustering","text":"list containing clustering results modified top_table.","code":""},{"path":"/reference/huge_table_user_prompter.html","id":null,"dir":"Reference","previous_headings":"","what":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","title":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","text":"function iterates list tables checks table 300 rows. table found, prompts user proceed stop.","code":""},{"path":"/reference/huge_table_user_prompter.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","text":"","code":"huge_table_user_prompter(tables)"},{"path":"/reference/huge_table_user_prompter.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","text":"tables list data frames.","code":""},{"path":"/reference/huge_table_user_prompter.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","text":"NULL. function used side effects (prompting user potentially stopping script).","code":""},{"path":"/reference/is_not_na.html","id":null,"dir":"Reference","previous_headings":"","what":"Check if Not All Values are NA — is_not_na","title":"Check if Not All Values are NA — is_not_na","text":"Determines given atomic vector contains least one non-NA value.","code":""},{"path":"/reference/is_not_na.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check if Not All Values are NA — is_not_na","text":"","code":"is_not_na(x)"},{"path":"/reference/is_not_na.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check if Not All Values are NA — is_not_na","text":"x atomic vector object.","code":""},{"path":"/reference/is_not_na.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check if Not All Values are NA — is_not_na","text":"TRUE vector contains least one non-NA value object atomic; FALSE otherwise.","code":""},{"path":"/reference/make_clustering_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Make Clustering Report — make_clustering_report","title":"Make Clustering Report — make_clustering_report","text":"Generates detailed clustering report including heatmaps, dendrograms, curve plots, consensus shapes level within condition.","code":""},{"path":"/reference/make_clustering_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make Clustering Report — make_clustering_report","text":"","code":"make_clustering_report( all_levels_clustering, condition, data, meta, annotation, genes, spline_params, adj_pthresholds, report_dir, mode, report_info, design, meta_batch_column, meta_batch2_column, plot_info, analysis_type, feature_name_columns )"},{"path":"/reference/make_clustering_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make Clustering Report — make_clustering_report","text":"all_levels_clustering list containing clustering results level within condition. condition character string specifying condition. data matrix data values. meta dataframe containing metadata. annotation Dataframe containig annotation info features, gene uniprotID, example. genes Character vector containing genes features. spline_params list spline parameters analysis. adj_pthresholds Numeric vector, containing float < 1 > 0 value. one float every level, adj. p-value threshold. report_dir character string specifying report directory. mode character string specifying mode ('isolated' 'integrated'). report_info object containing report information. design string representing limma design formula meta_batch_column character string specifying meta batch column. meta_batch2_column character string specifying second meta batch column. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.). analysis_type One strings \"time_effect\", \"avrg_diff_conditions\" , \"interaction_condition_time\". represent three different outputs limma analysis. info 3 \"categories\", see package dir inst/ descriptions/limma_result_categories.pdf. feature_name_columns Character vector containing column names annotation info describe features. argument used specify HTML report exactly feature names displayed individual spline plot created. Use vector used create row headers data matrix!","code":""},{"path":"/reference/make_clustering_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make Clustering Report — make_clustering_report","text":"return value, called side effects.","code":""},{"path":[]},{"path":"/reference/make_correlation_heatmaps.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Correlation Heatmaps — make_correlation_heatmaps","title":"Generate Correlation Heatmaps — make_correlation_heatmaps","text":"function generates correlation heatmaps using Spearman correlation given data matrix. creates combined heatmap levels individual heatmaps level specified condition column metadata.","code":""},{"path":"/reference/make_correlation_heatmaps.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Correlation Heatmaps — make_correlation_heatmaps","text":"","code":"make_correlation_heatmaps(data, meta, condition)"},{"path":"/reference/make_correlation_heatmaps.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Correlation Heatmaps — make_correlation_heatmaps","text":"data numeric matrix containing data. meta dataframe containing metadata. condition column name metadata dataframe contains factor levels generating individual heatmaps.","code":""},{"path":"/reference/make_correlation_heatmaps.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Correlation Heatmaps — make_correlation_heatmaps","text":"list `ComplexHeatmap` heatmap objects representing correlation heatmaps.","code":""},{"path":"/reference/make_density_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Density Plot — make_density_plots","title":"Generate Density Plot — make_density_plots","text":"function generates density plot given data matrix. density plot shows distribution values data matrix.","code":""},{"path":"/reference/make_density_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Density Plot — make_density_plots","text":"","code":"make_density_plots(data, meta, condition)"},{"path":"/reference/make_density_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Density Plot — make_density_plots","text":"data numeric matrix containing data. meta dataframe containing column meta data data condition name factor column meta experiment","code":""},{"path":"/reference/make_density_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Density Plot — make_density_plots","text":"ggplot object representing density plot.","code":""},{"path":"/reference/make_enrich_dotplot.html","id":null,"dir":"Reference","previous_headings":"","what":"Make Enrich Dotplot — make_enrich_dotplot","title":"Make Enrich Dotplot — make_enrich_dotplot","text":"Make enriched dotplot visualization.","code":""},{"path":"/reference/make_enrich_dotplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make Enrich Dotplot — make_enrich_dotplot","text":"","code":"make_enrich_dotplot(enrichments_list, databases, title = \"Title\")"},{"path":"/reference/make_enrich_dotplot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make Enrich Dotplot — make_enrich_dotplot","text":"enrichments_list list enrichments containing data frames different databases. databases character vector specifying databases included. title character string specifying title dotplot.","code":""},{"path":"/reference/make_enrich_dotplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make Enrich Dotplot — make_enrich_dotplot","text":"list containing: p ggplot object representing dotplot. dotplot_nrows integer specifying number rows dotplot. full_enrich_results data frame containing full enrichments results.","code":""},{"path":"/reference/make_mds_plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate MDS Plot — make_mds_plot","title":"Generate MDS Plot — make_mds_plot","text":"function generates multidimensional scaling (MDS) plot given data matrix. MDS plot visualizes similarities dissimilarities samples data matrix.","code":""},{"path":"/reference/make_mds_plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate MDS Plot — make_mds_plot","text":"","code":"make_mds_plot(data, meta, condition)"},{"path":"/reference/make_mds_plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate MDS Plot — make_mds_plot","text":"data numeric matrix containing data. meta dataframe, containign meta information data. condition column meta dataframe containign levels separate experiment.","code":""},{"path":"/reference/make_mds_plot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate MDS Plot — make_mds_plot","text":"ggplot object representing MDS plot.","code":""},{"path":"/reference/make_pca_plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","title":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","text":"function generates PCA plot data matrix, dynamically coloring points based levels specified factor metadata.","code":""},{"path":"/reference/make_pca_plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","text":"","code":"make_pca_plot(data, meta, condition)"},{"path":"/reference/make_pca_plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","text":"data numeric matrix containing data. meta dataframe containing metadata. condition column name metadata dataframe contains factor levels coloring PCA plot.","code":""},{"path":"/reference/make_pca_plot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","text":"ggplot object representing PCA plot.","code":""},{"path":"/reference/make_violin_box_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Violin Box Plot — make_violin_box_plots","title":"Generate Violin Box Plot — make_violin_box_plots","text":"function generates violin plot given data matrix. violin plot shows distribution values data matrix across different variables, variable's distribution displayed separate violin.","code":""},{"path":"/reference/make_violin_box_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Violin Box Plot — make_violin_box_plots","text":"","code":"make_violin_box_plots(data, meta, condition)"},{"path":"/reference/make_violin_box_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Violin Box Plot — make_violin_box_plots","text":"data numeric matrix containing data. meta dataframe containing column meta data data condition name factor column meta experiment","code":""},{"path":"/reference/make_violin_box_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Violin Box Plot — make_violin_box_plots","text":"ggplot object representing violin plot.","code":""},{"path":"/reference/manage_gsea_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","title":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","text":"function manages GSEA analysis specific level. extracts genes associated clustered hits, removes rows `NA` values, runs GSEA analysis using `create_gsea_report` function.","code":""},{"path":"/reference/manage_gsea_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","text":"","code":"manage_gsea_level( clustered_hits, level_name, databases, clusterProfiler_params )"},{"path":"/reference/manage_gsea_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","text":"clustered_hits dataframe containing clustered hits specific level. must include column named `feature` extract genes. level_name character string representing name level. databases list databases gene set enrichment analysis. clusterProfiler_params Additional parameters GSEA analysis, default NA. include adj_p_value, pAdjustMethod, etc (see clusterProfiler documentation).","code":""},{"path":"/reference/manage_gsea_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","text":"result `create_gsea_report` function, typically includes various plots enrichment results.","code":""},{"path":"/reference/merge_annotation_all_levels_clustering.html","id":null,"dir":"Reference","previous_headings":"","what":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","title":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","text":"function merges annotation information `top_table` non-logical element list.","code":""},{"path":"/reference/merge_annotation_all_levels_clustering.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","text":"","code":"merge_annotation_all_levels_clustering(all_levels_clustering, annotation)"},{"path":"/reference/merge_annotation_all_levels_clustering.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","text":"all_levels_clustering list element contains `top_table` dataframe `feature_nr` column. elements may logical values. annotation dataframe containing annotation information.","code":""},{"path":"/reference/merge_annotation_all_levels_clustering.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","text":"list updated `top_table` dataframes containing merged annotation information.","code":""},{"path":"/reference/merge_top_table_with_annotation.html","id":null,"dir":"Reference","previous_headings":"","what":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","title":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","text":"function merges annotation information single `top_table` dataframe based `feature_nr` column.","code":""},{"path":"/reference/merge_top_table_with_annotation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","text":"","code":"merge_top_table_with_annotation(top_table, annotation)"},{"path":"/reference/merge_top_table_with_annotation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","text":"top_table dataframe containing `top_table` `feature_nr` column. annotation dataframe containing annotation information.","code":""},{"path":"/reference/merge_top_table_with_annotation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","text":"dataframe updated `top_table` containing merged annotation information.","code":""},{"path":"/reference/modify_limma_top_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Modify limma Top Table — modify_limma_top_table","title":"Modify limma Top Table — modify_limma_top_table","text":"Modifies limma top table include feature indices names.","code":""},{"path":"/reference/modify_limma_top_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Modify limma Top Table — modify_limma_top_table","text":"","code":"modify_limma_top_table(top_table, feature_names)"},{"path":"/reference/modify_limma_top_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Modify limma Top Table — modify_limma_top_table","text":"top_table dataframe containing top table results limma feature_names character vector feature names.","code":""},{"path":"/reference/modify_limma_top_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Modify limma Top Table — modify_limma_top_table","text":"tibble feature indices names included.","code":""},{"path":"/reference/normalize_curves.html","id":null,"dir":"Reference","previous_headings":"","what":"Normalize Curve Values — normalize_curves","title":"Normalize Curve Values — normalize_curves","text":"function normalizes row data frame matrix curve values. Normalization performed row's values range 0 (corresponding minimum value row) 1 (corresponding maximum value row).","code":""},{"path":"/reference/normalize_curves.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Normalize Curve Values — normalize_curves","text":"","code":"normalize_curves(curve_values)"},{"path":"/reference/normalize_curves.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Normalize Curve Values — normalize_curves","text":"curve_values data frame matrix curve values row represents curve column time point.","code":""},{"path":"/reference/normalize_curves.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Normalize Curve Values — normalize_curves","text":"data frame matrix dimensions input, row normalized.","code":""},{"path":"/reference/open_template.html","id":null,"dir":"Reference","previous_headings":"","what":"Open Template for Quick Setup — open_template","title":"Open Template for Quick Setup — open_template","text":"function opens `template.Rmd` file RStudio interactive use. template file provides structure users quickly set personal analysis.","code":""},{"path":"/reference/open_template.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Open Template for Quick Setup — open_template","text":"","code":"open_template()"},{"path":"/reference/open_tutorial.html","id":null,"dir":"Reference","previous_headings":"","what":"Interactive Tutorial for Getting Started — open_tutorial","title":"Interactive Tutorial for Getting Started — open_tutorial","text":"function opens `tutorial.Rmd` file RStudio interactive use. Users can run code chunk step step.","code":""},{"path":"/reference/open_tutorial.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Interactive Tutorial for Getting Started — open_tutorial","text":"","code":"open_tutorial()"},{"path":"/reference/perform_clustering.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform Clustering — perform_clustering","title":"Perform Clustering — perform_clustering","text":"Performs clustering top tables using specified p-values clusters level within condition.","code":""},{"path":"/reference/perform_clustering.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform Clustering — perform_clustering","text":"","code":"perform_clustering(top_tables, clusters, meta, condition, spline_params, mode)"},{"path":"/reference/perform_clustering.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform Clustering — perform_clustering","text":"top_tables list top tables limma analysis. clusters list specifying clusters \"auto\" automatic estimation. meta dataframe containing metadata. condition character string specifying condition. spline_params list spline parameters analysis. mode character string specifying mode ('isolated' 'integrated').","code":""},{"path":"/reference/perform_clustering.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform Clustering — perform_clustering","text":"list clustering results level within condition.","code":""},{"path":[]},{"path":"/reference/plot2base64.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert Plot to Base64 — plot2base64","title":"Convert Plot to Base64 — plot2base64","text":"Converts ggplot2 plot Base64-encoded PNG image returns HTML img tag embedding report.","code":""},{"path":"/reference/plot2base64.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert Plot to Base64 — plot2base64","text":"","code":"plot2base64( plot, height, width = 7, base_height_per_row = 2.5, units = \"in\", html_img_width = \"100%\" )"},{"path":"/reference/plot2base64.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert Plot to Base64 — plot2base64","text":"plot ggplot2 plot object. height integer specifying height plot correct representation HTML. width numeric value specifying width plot inches. base_height_per_row numeric value specifying base height per row inches. units character string specifying units width height. html_img_width character string specifying width image HTML.","code":""},{"path":"/reference/plot2base64.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert Plot to Base64 — plot2base64","text":"character string containing HTML img tag Base64-encoded plot.","code":""},{"path":[]},{"path":"/reference/plot_all_mean_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot All Mean Splines — plot_all_mean_splines","title":"Plot All Mean Splines — plot_all_mean_splines","text":"Generates plot average curves cluster, showing min-max normalized intensities time.","code":""},{"path":"/reference/plot_all_mean_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot All Mean Splines — plot_all_mean_splines","text":"","code":"plot_all_mean_splines(curve_values, plot_info)"},{"path":"/reference/plot_all_mean_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot All Mean Splines — plot_all_mean_splines","text":"curve_values dataframe containing curve values cluster assignments. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.).","code":""},{"path":"/reference/plot_all_mean_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot All Mean Splines — plot_all_mean_splines","text":"ggplot object representing average curves cluster.","code":""},{"path":"/reference/plot_cluster_mean_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Consensus Shapes — plot_cluster_mean_splines","title":"Plot Consensus Shapes — plot_cluster_mean_splines","text":"Generates composite plots single consensus shapes cluster curve values.","code":""},{"path":"/reference/plot_cluster_mean_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Consensus Shapes — plot_cluster_mean_splines","text":"","code":"plot_cluster_mean_splines(curve_values, plot_info)"},{"path":"/reference/plot_cluster_mean_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Consensus Shapes — plot_cluster_mean_splines","text":"curve_values dataframe containing curve values cluster assignments. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.).","code":""},{"path":"/reference/plot_cluster_mean_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Consensus Shapes — plot_cluster_mean_splines","text":"list containing plot every cluster","code":""},{"path":[]},{"path":"/reference/plot_composite_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Composite Splines — plot_composite_splines","title":"Plot Composite Splines — plot_composite_splines","text":"Generates composite spline plots significant non-significant features based specified indices.","code":""},{"path":"/reference/plot_composite_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Composite Splines — plot_composite_splines","text":"","code":"plot_composite_splines( data, meta, spline_test_configs, top_table, top_table_name, indices, type, time_unit_label )"},{"path":"/reference/plot_composite_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Composite Splines — plot_composite_splines","text":"data matrix data values. meta dataframe containing metadata. spline_test_configs configuration object spline tests. top_table dataframe containing top table results. top_table_name character string specifying name top table. indices vector indices specifying features plot. type character string specifying type features ('significant' 'not_significant'). time_unit_label string shown plots unit time, min hours.","code":""},{"path":"/reference/plot_composite_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Composite Splines — plot_composite_splines","text":"list containing composite plot length plots generated, FALSE otherwise.","code":""},{"path":[]},{"path":"/reference/plot_cv.html","id":null,"dir":"Reference","previous_headings":"","what":"Coefficient of Variation (CV) Plot — plot_cv","title":"Coefficient of Variation (CV) Plot — plot_cv","text":"function takes data frame time series data (rows features columns samples), meta table sample information including time points conditions, computes coefficient variation (CV) feature condition level, plots distribution CVs.","code":""},{"path":"/reference/plot_cv.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coefficient of Variation (CV) Plot — plot_cv","text":"","code":"plot_cv(data, meta, condition)"},{"path":"/reference/plot_cv.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coefficient of Variation (CV) Plot — plot_cv","text":"data data frame rows features columns samples. meta data frame sample metadata. Must contain column \"Time\" condition column. condition name column meta table contains condition information.","code":""},{"path":"/reference/plot_cv.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coefficient of Variation (CV) Plot — plot_cv","text":"list ggplot2 objects, showing distribution CVs one condition.","code":""},{"path":"/reference/plot_dendrogram.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Dendrogram — plot_dendrogram","title":"Plot Dendrogram — plot_dendrogram","text":"Generates dendrogram plot hierarchical clustering results, colored clusters.","code":""},{"path":"/reference/plot_dendrogram.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Dendrogram — plot_dendrogram","text":"","code":"plot_dendrogram(hc, k)"},{"path":"/reference/plot_dendrogram.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Dendrogram — plot_dendrogram","text":"hc hierarchical clustering object. k integer specifying number clusters.","code":""},{"path":"/reference/plot_dendrogram.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Dendrogram — plot_dendrogram","text":"ggplot object representing dendrogram.","code":""},{"path":[]},{"path":"/reference/plot_first_lag_autocorrelation.html","id":null,"dir":"Reference","previous_headings":"","what":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","title":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","text":"function takes data frame time series data (rows features columns samples), meta table sample information including time points conditions, computes first lag autocorrelation feature condition level, plots distribution autocorrelation coefficients.","code":""},{"path":"/reference/plot_first_lag_autocorrelation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","text":"","code":"plot_first_lag_autocorrelation(data, meta, condition)"},{"path":"/reference/plot_first_lag_autocorrelation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","text":"data data frame rows features columns samples. meta data frame sample metadata. Must contain column \"Time\" condition column. condition name column meta table contains condition information.","code":""},{"path":"/reference/plot_first_lag_autocorrelation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","text":"list ggplot2 objects, showing distribution first lag autocorrelation coefficients one condition.","code":""},{"path":"/reference/plot_heatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Heatmap — plot_heatmap","title":"Plot Heatmap — plot_heatmap","text":"Generates heatmaps level within condition, showing z-scores log2 intensity values, split clusters.","code":""},{"path":"/reference/plot_heatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Heatmap — plot_heatmap","text":"","code":"plot_heatmap( datas, meta, mode, condition, all_levels_clustering, time_unit_label )"},{"path":"/reference/plot_heatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Heatmap — plot_heatmap","text":"datas matrix data values. meta dataframe containing metadata. mode character vector length 1, specifying type limma design formula (integrated formulas interaction effects levels, isolated formulas level analysed isolation (interaction effects)) condition character string specifying condition. all_levels_clustering list containing clustering results level within condition. time_unit_label character string specifying time unit label.","code":""},{"path":"/reference/plot_heatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Heatmap — plot_heatmap","text":"list ComplexHeatmap heatmap objects level.","code":""},{"path":[]},{"path":"/reference/plot_lag1_differences.html","id":null,"dir":"Reference","previous_headings":"","what":"Lag-1 Differences Plot — plot_lag1_differences","title":"Lag-1 Differences Plot — plot_lag1_differences","text":"function takes data frame time series data (rows features columns samples), meta table sample information including time points conditions, computes lag-1 differences feature condition level, plots distribution differences.","code":""},{"path":"/reference/plot_lag1_differences.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Lag-1 Differences Plot — plot_lag1_differences","text":"","code":"plot_lag1_differences(data, meta, condition)"},{"path":"/reference/plot_lag1_differences.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Lag-1 Differences Plot — plot_lag1_differences","text":"data data frame rows features columns samples. meta data frame sample metadata. Must contain column \"Time\" condition column. condition name column meta table contains condition information.","code":""},{"path":"/reference/plot_lag1_differences.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Lag-1 Differences Plot — plot_lag1_differences","text":"list ggplot2 objects, showing distribution lag-1 differences one condition.","code":""},{"path":"/reference/plot_limma_combos_results.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot limma Combination Results — plot_limma_combos_results","title":"Plot limma Combination Results — plot_limma_combos_results","text":"Generates plots pairwise comparisons hyperparameter combinations using limma results.","code":""},{"path":"/reference/plot_limma_combos_results.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot limma Combination Results — plot_limma_combos_results","text":"","code":"plot_limma_combos_results( top_tables_combos, datas, metas, condition, spline_test_configs, meta_batch_column, meta_batch2_column, time_unit = time_unit )"},{"path":"/reference/plot_limma_combos_results.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot limma Combination Results — plot_limma_combos_results","text":"top_tables_combos list top tables combination. datas list matrices. metas list metadata corresponding data matrices. condition Meta column name contains levels. spline_test_configs configuration object spline tests. meta_batch_column character string specifying meta batch column. meta_batch2_column character string specifying second meta batch column. time_unit single character, s, m, h, d, specifying time_unit used plots (s = seconds, m = minutes, h = hours, d = days). single character converted string little bit verbose, sec square brackets s.","code":""},{"path":"/reference/plot_limma_combos_results.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot limma Combination Results — plot_limma_combos_results","text":"list results including hit comparison plots composite spline plots pair combinations.","code":""},{"path":"/reference/plot_mean_correlation_with_time.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","title":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","text":"function takes data frame time series data (rows features columns samples) meta table sample information including time points, computes correlation feature time, plots distribution correlations.","code":""},{"path":"/reference/plot_mean_correlation_with_time.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","text":"","code":"plot_mean_correlation_with_time(data, meta, condition)"},{"path":"/reference/plot_mean_correlation_with_time.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","text":"data data frame rows features columns samples. meta data frame sample metadata. Must contain column \"Time\". condition column meta dataframe containign levels separate experiment.","code":""},{"path":"/reference/plot_mean_correlation_with_time.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","text":"ggplot2 object showing distribution mean correlations time. @importFrom rlang .data","code":""},{"path":"/reference/plot_single_and_mean_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Single and Mean Splines — plot_single_and_mean_splines","title":"Plot Single and Mean Splines — plot_single_and_mean_splines","text":"Generates plot showing individual time series shapes consensus (mean) shape.","code":""},{"path":"/reference/plot_single_and_mean_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Single and Mean Splines — plot_single_and_mean_splines","text":"","code":"plot_single_and_mean_splines(time_series_data, title, plot_info)"},{"path":"/reference/plot_single_and_mean_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Single and Mean Splines — plot_single_and_mean_splines","text":"time_series_data dataframe matrix time series data. title character string specifying title plot. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.).","code":""},{"path":"/reference/plot_single_and_mean_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Single and Mean Splines — plot_single_and_mean_splines","text":"ggplot object representing single consensus shapes.","code":""},{"path":[]},{"path":"/reference/plot_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Splines for Features Based on Top Table Information — plot_splines","title":"Plot Splines for Features Based on Top Table Information — plot_splines","text":"function generates plots feature listed top table using spline interpolation fitted values. creates individual plots feature combines single composite plot. function internal exported.","code":""},{"path":"/reference/plot_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Splines for Features Based on Top Table Information — plot_splines","text":"","code":"plot_splines( top_table, data, meta, X, time_unit_label, plot_info, adj_pthreshold )"},{"path":"/reference/plot_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Splines for Features Based on Top Table Information — plot_splines","text":"top_table dataframe containing indices names features, along statistical metrics intercepts spline coefficients. data matrix dataframe containing raw data values feature. meta dataframe containing metadata data, including time points. X limma design matrix defines experimental conditions. time_unit_label string shown plots unit time, min hours. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.). adj_pthreshold Double > 0 < 1 specifying adj. p-val threshold.","code":""},{"path":"/reference/plot_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Splines for Features Based on Top Table Information — plot_splines","text":"list containing composite plot number rows used plot layout.","code":""},{"path":"/reference/prepare_gene_lists_for_enrichr.html","id":null,"dir":"Reference","previous_headings":"","what":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","title":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","text":"function processes clustered hits element `all_levels_clustering`, formats gene names easy copy-pasting Enrichr, returns formatted gene lists string.","code":""},{"path":"/reference/prepare_gene_lists_for_enrichr.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","text":"","code":"prepare_gene_lists_for_enrichr(all_levels_clustering, genes)"},{"path":"/reference/prepare_gene_lists_for_enrichr.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","text":"all_levels_clustering list element contains dataframe `clustered_hits` columns `feature` `cluster`. genes vector gene names corresponding feature indices.","code":""},{"path":"/reference/prepare_gene_lists_for_enrichr.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","text":"character vector formatted gene lists cluster.","code":""},{"path":"/reference/prepare_plot_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Prepare Plot Data — prepare_plot_data","title":"Prepare Plot Data — prepare_plot_data","text":"function prepares plot data visualization based enrichments lists specified databases.","code":""},{"path":"/reference/prepare_plot_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prepare Plot Data — prepare_plot_data","text":"","code":"prepare_plot_data(enrichments_list, databases)"},{"path":"/reference/prepare_plot_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prepare Plot Data — prepare_plot_data","text":"enrichments_list list enrichments containing data frames different databases. databases character vector specifying databases included.","code":""},{"path":"/reference/prepare_plot_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prepare Plot Data — prepare_plot_data","text":"list containing two data frames: top_plot_data data frame containing prepared plot data visualization top combinations. full_enrich_results data frame containing full enrichments results.","code":""},{"path":"/reference/preprocess_rna_seq_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","title":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","text":"function called `preprocess_rna_seq` `TRUE`. performs default preprocessing steps raw RNA-seq counts, including creating `DGEList` object, normalizing counts, applying `voom` transformation.","code":""},{"path":"/reference/preprocess_rna_seq_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","text":"","code":"preprocess_rna_seq_data(raw_counts, design_matrix, normalize_func = NULL)"},{"path":"/reference/preprocess_rna_seq_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","text":"raw_counts matrix raw RNA-seq counts (genes rows, samples columns). design_matrix design matrix used linear modeling, typically specifying experimental conditions. normalize_func optional normalization function. provided, function used normalize `DGEList` object. provided, TMM normalization (via `edgeR::calcNormFactors`) used default.","code":""},{"path":"/reference/preprocess_rna_seq_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","text":"`voom` object, includes log2-counts per million (logCPM) matrix observation-specific weights.","code":""},{"path":"/reference/print_info_message.html","id":null,"dir":"Reference","previous_headings":"","what":"Print Informational Message — print_info_message","title":"Print Informational Message — print_info_message","text":"function prints nicely formatted informational message green \"Info\" label.","code":""},{"path":"/reference/print_info_message.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Print Informational Message — print_info_message","text":"","code":"print_info_message(message_prefix, report_dir)"},{"path":"/reference/print_info_message.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Print Informational Message — print_info_message","text":"message_prefix custom message prefix displayed success message. report_dir directory HTML reports located.","code":""},{"path":"/reference/process_combo.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Combination — process_combo","title":"Process Combination — process_combo","text":"Processes single combination data, design, spline configuration, p-threshold generate LIMMA spline results.","code":""},{"path":"/reference/process_combo.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Combination — process_combo","text":"","code":"process_combo( data_index, design_index, spline_config_index, pthreshold, datas, metas, designs, modes, condition, spline_test_configs, feature_names, padjust_method, ... )"},{"path":"/reference/process_combo.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Combination — process_combo","text":"data_index Index data datas list. design_index Index design designs list. spline_config_index Index spline configuration spline_test_configs list. pthreshold p-value threshold significance. datas list data matrices metas list metadata corresponding data matrices. designs list design matrices. modes character vector containing 'isolated' 'integrated'. condition single character string specifying condition. spline_test_configs configuration object spline tests. feature_names character vector feature names. padjust_method single character string specifying p-adjustment method. ... Additional arguments.","code":""},{"path":"/reference/process_combo.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Combination — process_combo","text":"list top tables LIMMA spline analysis.","code":""},{"path":[]},{"path":"/reference/process_combo_pair.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Combination Pair — process_combo_pair","title":"Process Combination Pair — process_combo_pair","text":"Processes combination pair generate plots compile HTML report.","code":""},{"path":"/reference/process_combo_pair.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Combination Pair — process_combo_pair","text":"","code":"process_combo_pair( combo_pair, combo_pair_name, report_info, report_dir, timestamp )"},{"path":"/reference/process_combo_pair.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Combination Pair — process_combo_pair","text":"combo_pair list containing hit comparison composite spline plots. combo_pair_name character string naming combination pair. report_info object containing report information. report_dir non-empty string specifying report directory. timestamp timestamp include report filename.","code":""},{"path":"/reference/process_combo_pair.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Combination Pair — process_combo_pair","text":"return value, called side effects.","code":""},{"path":[]},{"path":"/reference/process_config_column.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Configuration Column — process_config_column","title":"Process Configuration Column — process_config_column","text":"Processes configuration column based given mode number levels.","code":""},{"path":"/reference/process_config_column.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Configuration Column — process_config_column","text":"","code":"process_config_column(config_column, index, num_levels, mode)"},{"path":"/reference/process_config_column.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Configuration Column — process_config_column","text":"config_column configuration column spline test configurations. index Index configuration process. num_levels Number unique levels metadata condition. mode character string specifying mode ('integrated' 'isolated').","code":""},{"path":"/reference/process_config_column.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Configuration Column — process_config_column","text":"vector list processed configuration values.","code":""},{"path":"/reference/process_enrichment_results.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Enrichment Results — process_enrichment_results","title":"Process Enrichment Results — process_enrichment_results","text":"Process enrichment results visualization.","code":""},{"path":"/reference/process_enrichment_results.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Enrichment Results — process_enrichment_results","text":"","code":"process_enrichment_results( all_db_results, enrichment_results, adjP_threshold, column_name, count_column_name, background = FALSE )"},{"path":"/reference/process_enrichment_results.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Enrichment Results — process_enrichment_results","text":"all_db_results list data frames containing enrichment results databases. enrichment_results list data frames containing enrichment results individual databases. adjP_threshold threshold adjusted p-values. column_name name column store adjusted p-values. count_column_name name column store gene counts. background Logical indicating whether background ratios included.","code":""},{"path":"/reference/process_enrichment_results.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Enrichment Results — process_enrichment_results","text":"list data frames containing processed enrichment results.","code":""},{"path":"/reference/process_field.html","id":null,"dir":"Reference","previous_headings":"","what":"Process and Encode Data Field for Report — process_field","title":"Process and Encode Data Field for Report — process_field","text":"function processes given field, encodes associated data base64, generates download link report. handles different types fields including data, meta, top tables, Enrichr formatted gene lists.","code":""},{"path":"/reference/process_field.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process and Encode Data Field for Report — process_field","text":"","code":"process_field( field, data, meta, topTables, report_info, encode_df_to_base64, report_type, enrichr_format )"},{"path":"/reference/process_field.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process and Encode Data Field for Report — process_field","text":"field string specifying field process. data dataframe containing main data. meta dataframe containing meta information. topTables dataframe containing results differential expression analysis. report_info list containing additional report information. encode_df_to_base64 function encode dataframe base64. report_type string specifying type report. enrichr_format list formatted gene lists background gene list.","code":""},{"path":"/reference/process_field.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process and Encode Data Field for Report — process_field","text":"string containing HTML link downloading processed field.","code":""},{"path":"/reference/process_level_cluster.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Level Cluster — process_level_cluster","title":"Process Level Cluster — process_level_cluster","text":"Processes clustering specific level within condition using provided top table spline parameters.","code":""},{"path":"/reference/process_level_cluster.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Level Cluster — process_level_cluster","text":"","code":"process_level_cluster( top_table, cluster_size, level, meta, condition, spline_params, mode )"},{"path":"/reference/process_level_cluster.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Level Cluster — process_level_cluster","text":"top_table dataframe containing top table results limma. cluster_size size clusters generate. level level within condition process. meta dataframe containing metadata. condition character string specifying condition. spline_params list spline parameters analysis. mode character string specifying mode ('isolated' 'integrated').","code":""},{"path":"/reference/process_level_cluster.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Level Cluster — process_level_cluster","text":"list containing clustering results, including curve values design matrix.","code":""},{"path":[]},{"path":"/reference/process_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Plots — process_plots","title":"Process Plots — process_plots","text":"Converts plots base64 appends HTML content.","code":""},{"path":"/reference/process_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Plots — process_plots","text":"","code":"process_plots( plots_element, plots_size, html_content, toc, header_index, element_name = NA )"},{"path":"/reference/process_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Plots — process_plots","text":"plots_element list plots processed. plots_size list sizes plots. html_content current state HTML content. toc current state table contents (TOC). header_index index uniquely identify section anchoring. element_name character string specifying name element.","code":""},{"path":"/reference/process_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Plots — process_plots","text":"Updated HTML content plots included.","code":""},{"path":"/reference/process_result.html","id":null,"dir":"Reference","previous_headings":"","what":"Process GSEA Result for a Specific Level — process_result","title":"Process GSEA Result for a Specific Level — process_result","text":"function processes GSEA result specific level. handles cases result contains `NA` values adding section break. Otherwise, extracts plot, plot size, header information result.","code":""},{"path":"/reference/process_result.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process GSEA Result for a Specific Level — process_result","text":"","code":"process_result(level_result, level_name)"},{"path":"/reference/process_result.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process GSEA Result for a Specific Level — process_result","text":"level_result list containing GSEA result specific level. level_name character string representing name level.","code":""},{"path":"/reference/process_result.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process GSEA Result for a Specific Level — process_result","text":"list following components: plot plot object \"section_break\" result contains `NA`. plot_size integer indicating size plot. header_info list header information, including level name, full enrichment results, raw enrichment results available.","code":""},{"path":"/reference/process_top_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Top Table — process_top_table","title":"Process Top Table — process_top_table","text":"Processes top table LIMMA analysis, adding feature names intercepts.","code":""},{"path":"/reference/process_top_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Top Table — process_top_table","text":"","code":"process_top_table(process_within_level_result, feature_names)"},{"path":"/reference/process_top_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Top Table — process_top_table","text":"process_within_level_result List lists containing limma topTable, fit, optionally voom object. one specific level. feature_names non-empty character vector feature names.","code":""},{"path":"/reference/process_top_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Top Table — process_top_table","text":"dataframe containing processed top table added intercepts.","code":""},{"path":[]},{"path":"/reference/process_within_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Within Level — process_within_level","title":"Process Within Level — process_within_level","text":"Performs within-level analysis using limma generate top tables fit objects based specified spline parameters. Performs limma spline analysis selected level factor","code":""},{"path":"/reference/process_within_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Within Level — process_within_level","text":"","code":"process_within_level( data, preprocess_rna_seq, normalization_fun, meta, design, spline_params, level_index, padjust_method )"},{"path":"/reference/process_within_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Within Level — process_within_level","text":"data matrix data values. preprocess_rna_seq Boolean specifying whether preprocess RNA seq normalization_fun Function normalizing RNA-seq raw counts. meta dataframe containing metadata, including 'Time' column. design design formula matrix limma analysis. spline_params list spline parameters analysis. level_index index level within factor. padjust_method character string specifying p-adjustment method.","code":""},{"path":"/reference/process_within_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Within Level — process_within_level","text":"list containing top table fit object limma analysis.","code":""},{"path":[]},{"path":"/reference/read_section_texts.html","id":null,"dir":"Reference","previous_headings":"","what":"Read and split section texts from a file — read_section_texts","title":"Read and split section texts from a file — read_section_texts","text":"internal function reads contents text file located `inst/descriptions` directory package splits individual sections based specified delimiter.","code":""},{"path":"/reference/read_section_texts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read and split section texts from a file — read_section_texts","text":"","code":"read_section_texts(filename)"},{"path":"/reference/read_section_texts.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read and split section texts from a file — read_section_texts","text":"filename character string specifying name file containing section texts. file located `inst/descriptions` directory package.","code":""},{"path":"/reference/read_section_texts.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read and split section texts from a file — read_section_texts","text":"character vector element section text split delimiter `|`.","code":""},{"path":"/reference/remove_batch_effect.html","id":null,"dir":"Reference","previous_headings":"","what":"Remove Batch Effect — remove_batch_effect","title":"Remove Batch Effect — remove_batch_effect","text":"Removes batch effects data matrices using specified batch column metadata.","code":""},{"path":"/reference/remove_batch_effect.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Remove Batch Effect — remove_batch_effect","text":"","code":"remove_batch_effect( datas, metas, meta_batch_column, meta_batch2_column, condition )"},{"path":"/reference/remove_batch_effect.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Remove Batch Effect — remove_batch_effect","text":"datas list matrices. metas list metadata corresponding data matrices. meta_batch_column character string specifying meta batch column. meta_batch2_column character string specifying second meta batch column. condition character vector length 1, specifying column name meta dataframe, contains levels separate experiment.","code":""},{"path":"/reference/remove_batch_effect.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Remove Batch Effect — remove_batch_effect","text":"list matrices batch effects removed applicable.","code":""},{"path":[]},{"path":"/reference/remove_batch_effect_cluster_hits.html","id":null,"dir":"Reference","previous_headings":"","what":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"function removes batch effects data level specified condition. supports isolated integrated modes, optional handling second batch column.","code":""},{"path":"/reference/remove_batch_effect_cluster_hits.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"","code":"remove_batch_effect_cluster_hits( data, meta, condition, meta_batch_column, meta_batch2_column, design, mode, spline_params )"},{"path":"/reference/remove_batch_effect_cluster_hits.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"data dataframe containing main data. meta dataframe containing meta information. condition string specifying column `meta` divides experiment levels. meta_batch_column string specifying column `meta` indicates batch information. meta_batch2_column string specifying second batch column `meta`, applicable. design design matrix experiment. mode string indicating mode operation: \"isolated\" \"integrated\". spline_params list spline parameters design matrix.","code":""},{"path":"/reference/remove_batch_effect_cluster_hits.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"list dataframes batch effects removed level.","code":""},{"path":"/reference/remove_batch_effect_cluster_hits.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"function operates two modes: isolated Processes level independently, using data level. integrated Processes entire dataset together. `meta_batch_column` specified, function removes batch effects using `removeBatchEffect`. second batch column (`meta_batch2_column`) specified, also included batch effect removal.","code":""},{"path":"/reference/remove_prefix.html","id":null,"dir":"Reference","previous_headings":"","what":"Remove Prefix from String — remove_prefix","title":"Remove Prefix from String — remove_prefix","text":"Removes specified prefix beginning string. function useful cleaning standardizing strings removing known prefixes.","code":""},{"path":"/reference/remove_prefix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Remove Prefix from String — remove_prefix","text":"","code":"remove_prefix(string, prefix)"},{"path":"/reference/remove_prefix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Remove Prefix from String — remove_prefix","text":"string string prefix removed. prefix string representing prefix removed.","code":""},{"path":"/reference/remove_prefix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Remove Prefix from String — remove_prefix","text":"string prefix removed.","code":""},{"path":"/reference/run_gsea.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate a GSEA Report — run_gsea","title":"Generate a GSEA Report — run_gsea","text":"function generates Gene Set Enrichment Analysis (GSEA) report based clustered hit levels, gene data, specified databases. processes input data, manages GSEA levels, produces HTML report plots.","code":""},{"path":"/reference/run_gsea.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate a GSEA Report — run_gsea","text":"","code":"run_gsea( levels_clustered_hits, databases, report_info, clusterProfiler_params = NA, plot_titles = NA, background = NULL, report_dir = here::here() )"},{"path":"/reference/run_gsea.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate a GSEA Report — run_gsea","text":"levels_clustered_hits list clustered hits different levels. databases list databases gene set enrichment analysis. report_info list containing information report generation. clusterProfiler_params Additional parameters GSEA analysis, default NA. include adj_p_value, pAdjustMethod, etc (see clusterProfiler documentation). plot_titles Titles plots, default NA. background Background data, default NULL. report_dir Directory report saved, default `::()`.","code":""},{"path":"/reference/run_gsea.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate a GSEA Report — run_gsea","text":"list plots generated GSEA report.","code":""},{"path":"/reference/run_limma_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"run_limma_splines.R contains the exported package function run_limma_splines and all the functions that make up the functionality of run_limma_splines. run_limma_splines performs a limma analysis, using splines, to assign a p-value to every feature of a time series omics dataset, to find out which features are significantly changed over the time course. Run Limma Analysis with Spline Interpolation for Hyperparameter Screening — run_limma_splines","title":"run_limma_splines.R contains the exported package function run_limma_splines and all the functions that make up the functionality of run_limma_splines. run_limma_splines performs a limma analysis, using splines, to assign a p-value to every feature of a time series omics dataset, to find out which features are significantly changed over the time course. Run Limma Analysis with Spline Interpolation for Hyperparameter Screening — run_limma_splines","text":"function conducts differential expression analysis using Limma package, incorporating spline interpolation model effect various experimental factors across different levels. supports isolated integrated modes within-level analysis -level comparison, adjusting multiple degrees freedom corresponding factors investigation.","code":""},{"path":"/reference/run_limma_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"run_limma_splines.R contains the exported package function run_limma_splines and all the functions that make up the functionality of run_limma_splines. run_limma_splines performs a limma analysis, using splines, to assign a p-value to every feature of a time series omics dataset, to find out which features are significantly changed over the time course. Run Limma Analysis with Spline Interpolation for Hyperparameter Screening — run_limma_splines","text":"","code":"run_limma_splines(splineomics)"},{"path":"/reference/run_limma_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"run_limma_splines.R contains the exported package function run_limma_splines and all the functions that make up the functionality of run_limma_splines. run_limma_splines performs a limma analysis, using splines, to assign a p-value to every feature of a time series omics dataset, to find out which features are significantly changed over the time course. Run Limma Analysis with Spline Interpolation for Hyperparameter Screening — run_limma_splines","text":"splineomics SplineOmics object, containing data, meta, design, condition, spline_params.","code":""},{"path":"/reference/run_limma_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"run_limma_splines.R contains the exported package function run_limma_splines and all the functions that make up the functionality of run_limma_splines. run_limma_splines performs a limma analysis, using splines, to assign a p-value to every feature of a time series omics dataset, to find out which features are significantly changed over the time course. Run Limma Analysis with Spline Interpolation for Hyperparameter Screening — run_limma_splines","text":"SplineOmics object, updated list three elements: - `time_effect`: list top tables level time effect. - `avrg_diff_conditions`: list top tables comparison levels. comparison average difference values. - `interaction_condition_time`: list top tables comparison levels. comparison interaction condition time.","code":""},{"path":"/reference/screen_limma_hyperparams.html","id":null,"dir":"Reference","previous_headings":"","what":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","title":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","text":"function screens various combinations hyperparameters limma analysis, including designs, modes, degrees freedom. validates inputs, generates results combinations, plots outcomes. Finally, may also involved generating HTML report part larger analysis workflow.","code":""},{"path":"/reference/screen_limma_hyperparams.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","text":"","code":"screen_limma_hyperparams( splineomics, datas, datas_descr, metas, designs, spline_test_configs, report_dir = here::here(), adj_pthresholds = c(0.05), time_unit = \"min\", padjust_method = \"BH\" )"},{"path":"/reference/screen_limma_hyperparams.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","text":"splineomics S3 object class `SplineOmics` contains necessary data parameters analysis, including: condition: string specifying column name meta dataframe, contains levels separate experiment ('treatment' can condition, 'drug' 'drug' can levels condition). report_info: meta_batch_column: character string specifying meta batch column. meta_batch2_column: character string specifying second meta batch column (limma function removeBatchEffect supports maximum two batch columns.) datas list data frames containing datasets analyzed. datas_descr description object data. metas list data frames containing metadata dataset `datas`. designs character vector design formulas limma analysis. spline_test_configs configuration object spline tests. report_dir non-empty string specifying report directory. adj_pthresholds numeric vector p-value thresholds significance determination. time_unit character string specifying time unit label plots. padjust_method character string specifying method p-value adjustment.","code":""},{"path":"/reference/screen_limma_hyperparams.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","text":"Returns list plots generated limma analysis results. element list corresponds different combination hyperparameters.","code":""},{"path":"/reference/set_default_params.html","id":null,"dir":"Reference","previous_headings":"","what":"Set Default Parameters — set_default_params","title":"Set Default Parameters — set_default_params","text":"function checks provided `params` list `NA` missing elements. `params` `NA`, assigns list default parameters. element missing `params`, adds missing element respective default value.","code":""},{"path":"/reference/set_default_params.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Set Default Parameters — set_default_params","text":"","code":"set_default_params(params)"},{"path":"/reference/set_default_params.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Set Default Parameters — set_default_params","text":"params list parameters checked updated default values necessary.","code":""},{"path":"/reference/set_default_params.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Set Default Parameters — set_default_params","text":"list parameters required elements, either input `params` added default values missing elements.","code":""},{"path":"/reference/shorten_names.html","id":null,"dir":"Reference","previous_headings":"","what":"Shorten Names — shorten_names","title":"Shorten Names — shorten_names","text":"Replaces occurrences unique values within name first three characters. function useful abbreviating long condition names dataset.","code":""},{"path":"/reference/shorten_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Shorten Names — shorten_names","text":"","code":"shorten_names(name, unique_values)"},{"path":"/reference/shorten_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Shorten Names — shorten_names","text":"name string representing name shortened. unique_values vector unique values whose abbreviations replace occurrences name.","code":""},{"path":"/reference/shorten_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Shorten Names — shorten_names","text":"string unique values replaced abbreviations.","code":""},{"path":"/reference/store_hits.html","id":null,"dir":"Reference","previous_headings":"","what":"Store Hits — store_hits","title":"Store Hits — store_hits","text":"Stores feature indices significant hits based adjusted p-value threshold condition.","code":""},{"path":"/reference/store_hits.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Store Hits — store_hits","text":"","code":"store_hits(condition)"},{"path":"/reference/store_hits.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Store Hits — store_hits","text":"condition list containing dataframes parameters condition.","code":""},{"path":"/reference/store_hits.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Store Hits — store_hits","text":"list element vector feature indices meet significance threshold.","code":""},{"path":"/reference/truncate_row_names.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncate Row Names — truncate_row_names","title":"Truncate Row Names — truncate_row_names","text":"function truncates row names exceed specified maximum length. row name length exceeds maximum length, appends \" ...\" indicate truncation.","code":""},{"path":"/reference/truncate_row_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncate Row Names — truncate_row_names","text":"","code":"truncate_row_names(names, max_length = 40)"},{"path":"/reference/truncate_row_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncate Row Names — truncate_row_names","text":"names character vector row names. max_length integer specifying maximum length row names. Default 40.","code":""},{"path":"/reference/truncate_row_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Truncate Row Names — truncate_row_names","text":"character vector truncated row names.","code":""},{"path":"/reference/update_splineomics.html","id":null,"dir":"Reference","previous_headings":"","what":"Update a SplineOmics object — update_splineomics","title":"Update a SplineOmics object — update_splineomics","text":"Updates SplineOmics object modifying existing fields adding new ones.","code":""},{"path":"/reference/update_splineomics.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Update a SplineOmics object — update_splineomics","text":"","code":"update_splineomics(splineomics, ...)"},{"path":"/reference/update_splineomics.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Update a SplineOmics object — update_splineomics","text":"splineomics SplineOmics object updated. ... Named arguments new values fields updated added.","code":""},{"path":"/reference/update_splineomics.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Update a SplineOmics object — update_splineomics","text":"updated SplineOmics object.","code":""},{"path":"/reference/within_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Within level analysis — within_level","title":"Within level analysis — within_level","text":"Processes single level within condition, performing LIMMA analysis generating top table results.","code":""},{"path":"/reference/within_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Within level analysis — within_level","text":"","code":"within_level( level, level_index, spline_params, data, preprocess_rna_seq, normalization_fun, meta, design, condition, feature_names, padjust_method, mode )"},{"path":"/reference/within_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Within level analysis — within_level","text":"level level within condition process. level_index index level within condition. spline_params list spline parameters analysis. data matrix data values. preprocess_rna_seq Boolean specifying whether preprocess RNA seq normalization_fun Function normalize RNA-seq raw counts. meta dataframe containing metadata. design design formula matrix LIMMA analysis. condition character string specifying condition. feature_names non-empty character vector feature names. padjust_method character string specifying p-adjustment method. mode character string specifying mode ('isolated' 'integrated').","code":""},{"path":"/reference/within_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Within level analysis — within_level","text":"list containing name results top table results.","code":""},{"path":[]}]
+[{"path":[]},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement thomas.rauter@plus.ac.. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.0, available https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. Community Impact Guidelines inspired Mozilla’s code conduct enforcement ladder. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/Docker-instructions.html","id":"pulling-the-docker-container","dir":"Articles","previous_headings":"","what":"Pulling the Docker Container","title":"Docker-instructions","text":"Pull Docker container: face ‘permission denied’ issues, check vignette","code":"# Docker Hub repo still private, will make it public then docker pull thomasrauter/splineomics:0.1.0"},{"path":"https://csbg.github.io/SplineOmics/articles/Docker-instructions.html","id":"running-the-docker-container","dir":"Articles","previous_headings":"","what":"Running the Docker Container","title":"Docker-instructions","text":"run Docker container, can use one following commands, depending operating System. respective command needs run folder subfolders input output exist. Place data meta (annotation) files input, receive output container output folder. Linux macOS: Windows: container running, open web browser navigate http://localhost:8888. Use rstudio username password set -e PASSWORD=123 option. long container running, can work localhost page RStudio, also SplineOmics package installed. /home/rstudio/ R session working folder. Direct generated results /home/rstudio/output, mounted local folder output. results . Stop container: Start container :","code":"# Bash docker run -it -d \\ -v $(pwd)/input:/home/rstudio/input \\ -v $(pwd)/output:/home/rstudio/output \\ -p 8888:8787 \\ -e PASSWORD=123 \\ --name splineomics \\ thomasrauter/splineomics:0.1.0 # PowerShell docker run -it -d ` -v \"${PWD}\\input:/home/rstudio/input\" ` -v \"${PWD}\\output:/home/rstudio/output\" ` -p 8888:8787 ` -e PASSWORD=123 ` --name splineomics ` thomasrauter/splineomics:0.1.0 docker stop splineomics docker start splineomics"},{"path":"https://csbg.github.io/SplineOmics/articles/Docker-instructions.html","id":"inspect-docker-container-installations","dir":"Articles","previous_headings":"","what":"Inspect Docker container installations","title":"Docker-instructions","text":"see R packages system installations make Docker container, can run following command terminal RStudio localhost browser page. /home/rstudio/output dir mounted local filesystem, make installation log files available .","code":"cp -r /log home/rstudio/output"},{"path":"https://csbg.github.io/SplineOmics/articles/design_limma_design_formula.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Designing a Limma Design Formula","text":"limma package powerful tool analyzing gene expression data, particularly context microarrays RNA-seq. critical part limma analysis design formula, specifies experimental conditions contrasts interested . vignette provides guide construct limma design formula correctly, examples best practices.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/design_limma_design_formula.html","id":"understanding-the-design-matrix","dir":"Articles","previous_headings":"","what":"Understanding the Design Matrix","title":"Designing a Limma Design Formula","text":"design matrix crucial component differential expression analysis using limma. defines relationships samples experimental conditions (factors) investigation. well-constructed design matrix allows limma correctly model effects factors estimate differential expression.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/design_limma_design_formula.html","id":"basic-design-formula","dir":"Articles","previous_headings":"Understanding the Design Matrix","what":"Basic Design Formula","title":"Designing a Limma Design Formula","text":"simplest form, design formula includes one factor, treatment vs. control. experiment involves comparing two conditions (e.g., treated vs. untreated), can create design formula like : , condition factor variable metadata (meta) represents experimental groups. Important Points: ~ 0 + condition syntax tells R create design matrix without intercept (.e., matrix level factor condition represented column). approach helpful want make direct comparisons conditions. Including Multiple Factors experiment includes one factor, time points treatments, can include design formula: formula assumes effects treatment time additive (interaction). suspect interaction treatment time might important, can include interaction term: Interaction Term: treatment * time term includes main effects treatment time interaction. Blocking Factors experiments, might technical biological replicates, blocking factors (e.g., batch effects). can include blocking factors design formula: formula accounts treatment batch effects, ensuring analysis confounded batch effects.","code":"design <- model.matrix(~ 0 + condition, data = meta) design <- model.matrix(~ 0 + treatment + time, data = meta) design <- model.matrix(~ 0 + treatment * time, data = meta) design <- model.matrix(~ 0 + treatment + batch, data = meta)"},{"path":"https://csbg.github.io/SplineOmics/articles/design_limma_design_formula.html","id":"creating-contrasts","dir":"Articles","previous_headings":"","what":"Creating Contrasts","title":"Designing a Limma Design Formula","text":"defining design matrix, likely want make specific comparisons conditions. contrasts come . example, compare treated vs. untreated, can define contrast matrix:","code":"contrast <- makeContrasts( treated_vs_untreated = treatmenttreated - treatmentuntreated, levels = design )"},{"path":"https://csbg.github.io/SplineOmics/articles/design_limma_design_formula.html","id":"practical-example","dir":"Articles","previous_headings":"","what":"Practical Example","title":"Designing a Limma Design Formula","text":"Let’s say experiment two treatments (B) two time points (early late). metadata might look like : design formula : contrast compare treatment early time point treatment B late time point :","code":"meta <- data.frame( sample = c(\"S1\", \"S2\", \"S3\", \"S4\"), treatment = factor(c(\"A\", \"A\", \"B\", \"B\")), time = factor(c(\"early\", \"late\", \"early\", \"late\")) ) design <- model.matrix(~ 0 + treatment * time, data = meta) contrast <- makeContrasts( A_early_vs_B_late = (treatmentA:timeearly) - (treatmentB:timelate), levels = design )"},{"path":"https://csbg.github.io/SplineOmics/articles/design_limma_design_formula.html","id":"summary","dir":"Articles","previous_headings":"","what":"Summary","title":"Designing a Limma Design Formula","text":"Starting ~ 0 means intercept (.e., including baseline group model). Starting ~ 1 (just ~) includes intercept (baseline group). Factors separated + indicate additive effects. example, ~ 0 + factor1 + factor2 means modeling effects factor1 factor2 additively, without considering interactions. * symbol used model interactions factors. example, ~ 0 + factor1 * factor2 include factor1, factor2, interaction (factor1:factor2). Alternatively, can specify interaction explicitly :. example, ~ 0 + factor1 + factor2 + factor1:factor2 equivalent ~ 0 + factor1 * factor2.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/design_limma_design_formula.html","id":"some-examples","dir":"Articles","previous_headings":"Summary","what":"Some examples:","title":"Designing a Limma Design Formula","text":"~ 0 + factor1 + factor2: Additive model without intercept. ~ 1 + factor1 + factor2: Additive model intercept. ~ 0 + factor1 * factor2: Model main effects interaction, intercept. ~ 1 + factor1 * factor2: Model intercept, main effects, interaction.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"about-this-tutorial","dir":"Articles","previous_headings":"","what":"About this tutorial","title":"get-started","text":"tutorial intends showcase explain capabilities SplineOmics package walking real complete example, start finish.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"example-overview","dir":"Articles","previous_headings":"About this tutorial","what":"Example Overview","title":"get-started","text":"example involves time-series proteomics experiment, CHO (chinese hamster ovary) cells cultivated three bioreactors (three biological replicates). experiment includes following setup: Samples taken exponential stationary growth phases. 60 minutes feeding 15, 60, 90, 120, 240 minutes feeding","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"analysis-goals","dir":"Articles","previous_headings":"About this tutorial","what":"Analysis Goals","title":"get-started","text":"main goals analysis : Identify proteins significant temporal changes: 7162 cellular proteins, objective detect proteins show significant change time CHO cells fed (.e., impact feeding). Cluster hits based temporal patterns: proteins (hits) significant temporal changes clustered according time-based patterns. Perform gene set enrichment analysis: cluster, gene set enrichment analysis performed determine specific biological processes - downregulated feeding.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"note","dir":"Articles","previous_headings":"About this tutorial","what":"Note","title":"get-started","text":"documentation SplineOmics package functions can viewed ","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"load-the-packages","dir":"Articles","previous_headings":"","what":"Load the packages","title":"get-started","text":"","code":"library(SplineOmics) library(readxl) # for loading Excel files library(here) # For managing filepaths #> here() starts at /home/thomasrauter/Documents/PhD/projects/DGTX/R_packages/SplineOmics library(dplyr) # For data manipulation #> #> Attaching package: 'dplyr' #> The following objects are masked from 'package:stats': #> #> filter, lag #> The following objects are masked from 'package:base': #> #> intersect, setdiff, setequal, union"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"load-the-files","dir":"Articles","previous_headings":"","what":"Load the files","title":"get-started","text":"example, proteomics_data.rds file contains numeric values (intensities) also feature descriptions, gene protein name (= annotation part). Usually, load data example Excel file, .rds file compressed, reason format chosen limit size SplineOmics package. file meta.xlsx contains meta information, descriptions columns numeric values data. (example files part package don’t present system). Please note dataset actual experimental dataset, annotation information, gene names, removed since yet published time making SplineOmics package public. Instead, dataset includes randomly generated gene symbols gene names corresponding Cricetulus griseus (Chinese Hamster) row. intended demonstrate functionality package. left part data contains numeric values, right part annotation info, can copied separate dataframe, shown .","code":"data <- readRDS(system.file( \"extdata\", \"proteomics_data.rds\", package = \"SplineOmics\" )) meta <- read_excel( system.file( \"extdata\", \"proteomics_meta.xlsx\", package = \"SplineOmics\" ) ) # Extract the annotation part from the dataframe. first_na_col <- which(is.na(data[1,]))[1] annotation <- data |> dplyr::select((first_na_col + 1):ncol(data)) |> dplyr::slice(-c(1:3)) print(data) #> # A tibble: 4,165 × 40 #> `Sample ID` `1` `2` `3` `4` `5` `6` `7` `8` `9` `10` `11` #> #> 1 Reactor E09 E10 E12 E09 E10 E12 E09 E10 E12 E09 E10 #> 2 Time Point TP01 TP01 TP01 TP02 TP02 TP02 TP03 TP03 TP03 TP04 TP04 #> 3 Phase of F… Expo… Expo… Expo… Expo… Expo… Expo… Expo… Expo… Expo… Expo… Expo… #> 4 NA 15.2… 15.2… 15.3… 15.1… 15.2… 15.0… 15.2… 15.2… 15.2… 15.1… 15.2… #> 5 NA 15.0… 15.1… 15.2… 15.1… 15.1… 15.2… 15.2… 15.3… 15.2… 15.1… 15.1… #> 6 NA 14.5… 14.7… 14.6… 14.5… 14.6… 14.6… 14.5… 14.6… 14.7… 14.5… 14.6… #> 7 NA 16.3… 16.4… 16.4… 16.4… 16.4… 16.4… 16.3… 16.3… 16.4… 16.4… 16.4… #> 8 NA 16.7… 16.7… 16.6… 16.7… 16.7… 16.7… 16.7… 16.7… 16.6… 16.6… 16.7… #> 9 NA 13.8… 13.7… 13.9… 13.9… 13.9… 13.9… 13.9… 13.9… 13.9… 13.9… 13.9… #> 10 NA 21.8… 21.7… 21.6… 21.8… 21.6… 21.5… 21.5… 21.6… 21.5… 21.6… 21.5… #> # ℹ 4,155 more rows #> # ℹ 28 more variables: `12` , `13` , `14` , `15` , #> # `16` , `17` , `18` , `19` , `20` , `21` , #> # `22` , `23` , `24` , `25` , `26` , `27` , #> # `28` , `29` , `30` , `31` , `32` , `33` , #> # `34` , `35` , `36` , ...38 , Gene_symbol , #> # Gene_name print(meta) #> # A tibble: 36 × 5 #> Sample.ID Reactor Time.Point Phase Time #> #> 1 E09_TP01_Exponential E09 TP01 Exponential -60 #> 2 E10_TP01_Exponential E10 TP01 Exponential -60 #> 3 E12_TP01_Exponential E12 TP01 Exponential -60 #> 4 E09_TP02_Exponential E09 TP02 Exponential 15 #> 5 E10_TP02_Exponential E10 TP02 Exponential 15 #> 6 E12_TP02_Exponential E12 TP02 Exponential 15 #> 7 E09_TP03_Exponential E09 TP03 Exponential 60 #> 8 E10_TP03_Exponential E10 TP03 Exponential 60 #> 9 E12_TP03_Exponential E12 TP03 Exponential 60 #> 10 E09_TP04_Exponential E09 TP04 Exponential 90 #> # ℹ 26 more rows print(annotation) #> # A tibble: 4,162 × 2 #> Gene_symbol Gene_name #> #> 1 LOC113838844 cone-rod homeobox protein-like #> 2 Wdr83os WD repeat domain 83 opposite strand #> 3 Cubn cubilin #> 4 Dynlt1 dynein light chain Tctex-type 1 #> 5 Ostc oligosaccharyltransferase complex non-catalytic subunit #> 6 Unc5cl unc-5 family C-terminal like #> 7 Cfl1 cofilin 1 #> 8 LOC100752202 HEN methyltransferase 1 #> 9 LOC100755162 acyl-coenzyme A synthetase ACSM5, mitochondrial #> 10 LOC100768921 40S ribosomal protein S21 #> # ℹ 4,152 more rows"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"bring-the-inputs-into-the-standardized-format","dir":"Articles","previous_headings":"Load the files","what":"Bring the Inputs into the Standardized Format","title":"get-started","text":"Since data format required SplineOmics package, needs processing. SplineOmics package requires data numeric matrix, element allowed anything else number. can done commands R, file specific structure, function extract_data() can handle automatically.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"file-structure-requirements","dir":"Articles","previous_headings":"Load the files > Bring the Inputs into the Standardized Format","what":"File Structure Requirements","title":"get-started","text":"file looks like one used , : data matrix field left annotation info right fields separated one empty column","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"usage-of-the-extract_data-function","dir":"Articles","previous_headings":"Load the files > Bring the Inputs into the Standardized Format","what":"Usage of the extract_data() function","title":"get-started","text":", extract_data() can: Identify data matrix field return numeric matrix. Create column headers information written cells respective columns data matrix field. annotation columns specified, rowheaders increasing numbers. annotation columns specified (like \"First.Protein.Description\" \"ID\" example), combined form rowheaders (feature names).","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"usage-in-plotting","dir":"Articles","previous_headings":"Load the files > Bring the Inputs into the Standardized Format","what":"Usage in Plotting","title":"get-started","text":"generated rowheaders used label plots feature shown individually, : Spline plots datapoints individual feature.","code":"data <- SplineOmics::extract_data( # The dataframe with the numbers on the left and info on the right. data = data, # Use this annotation column for the feature names. feature_name_columns = c(\"Gene_name\"), # When TRUE, you must confirm that data is in the required format. user_prompt = FALSE )"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"perform-eda-exploratory-data-analysis","dir":"Articles","previous_headings":"","what":"Perform EDA (exploratory data analysis)","title":"get-started","text":"Now data required format (numeric matrix) can go . first step analyzing data typically Exploratory Data Analysis (EDA). EDA involves summarizing main characteristics data, often visualizations.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"common-eda-plots","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Common EDA Plots","title":"get-started","text":"common types EDA plots include: Density distributions Boxplots PCA (Principal Component Analysis) Correlation heatmaps , can generate plots lines R code. However, prefer, convenience, explore_data() function can handle .","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"using-explore_data-for-eda","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Using explore_data() for EDA","title":"get-started","text":"SplineOmics package provides function explore_data() perform EDA. function requires following arguments: data: numeric data matrix. meta: metadata table. condition: name column metadata contains levels experiment (e.g., “Exponential” “Stationary”). report_info: list contains general information analysis, name analyst datatype (e.g. proteomics)","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"optional-arguments","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Optional Arguments","title":"get-started","text":"addition required arguments, explore_data() offers several optional arguments: meta_batch_column: name column contains first batch effect. meta_batch2_column: name column contains second batch effect. least one batch column provided, function : Use removeBatchEffect() function limma remove batch effect data plotting. Generate two EDA HTML reports: one uncorrected data one batch-corrected data.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"output-and-report-options","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Output and Report Options","title":"get-started","text":"default, reports saved current working directory, location can changed using report_dir argument. function also returns plots generated analysis, can modify according needs. want report generated, can set report argument FALSE (example just want figures R environment)","code":"# Those fields are mandatory, because we believe that when such a report is # opened after half a year, those infos can be very helpful. report_info <- list( omics_data_type = \"PTX\", data_description = \"Proteomics data of CHO cells\", data_collection_date = \"February 2024\", analyst_name = \"Thomas Rauter\", contact_info = \"thomas.rauter@plus.ac.at\", project_name = \"DGTX\" ) report_dir <- here::here( \"results\", \"explore_data\" )"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"splineomics-object","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"SplineOmics Object","title":"get-started","text":"SplineOmics package, multiple functions take arguments input. make easier avoid errors, decided arguments provided individually functions, stored R6 object (type ‘SplineOmics’) object passed functions. Additionally, functions generate intermediate output, just necessary next function workflow, also just passed along updating SplineOmics object. don’t worry .","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"functionality","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > SplineOmics Object","what":"Functionality","title":"get-started","text":"SplineOmics object can seen container necessary arguments stored. function retrieves required arguments object potentially adds new data results back .","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"documentation","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > SplineOmics Object","what":"Documentation","title":"get-started","text":"documentation function creates SplineOmics object can found documentation function updates [documentation function takes SplineOmics object input specifies arguments must present SplineOmics object passed respective function.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"required-arguments-create_splineomics","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Required Arguments create_splineomics()","title":"get-started","text":"data: matrix data meta: Metadata associated data. condition: Meta column name levels (e.g., Exponential Stationary).","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"optional-arguments-create_splineomics","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Optional Arguments create_splineomics()","title":"get-started","text":"rna_seq_data: object containing preprocessed RNA-seq data, output limma::voom function. annotation: dataframe feature descriptions data. report_info: list containing general information analysis. meta_batch_column: Column meta batch information. meta_batch2_column: Column secondary meta batch information. design: limma design formula spline_params: Parameters spline functions. Now SplineOmics object defined, can perform exploratory data analysis. can see HTML report explore_data() function batch-corrected data, report batch-corrected data. EDA plots can tell range things. plots HTML report grouped three categories: Distribution Variability Analysis, Time Series Analysis, Dimensionality Reduction Clustering. look correlation heatmaps HTML report, can see samples E12_TP05_Exponential E10_TP10_Stationary stick . Seeing , might want remove data. can test happens , along testing hyperparameter choices influence results, package function screen_limma_hyperparams().","code":"# splineomics now contains the SplineOmics object. splineomics <- SplineOmics::create_splineomics( data = data, meta = meta, annotation = annotation, report_info = report_info, condition = \"Phase\", # Column of meta that contains the levels. meta_batch_column = \"Reactor\" # For batch effect removal ) plots <- SplineOmics::explore_data( splineomics = splineomics, # SplineOmics object report_dir = report_dir )"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"finding-the-best-hyperparameters","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis)","what":"Finding the Best Hyperparameters","title":"get-started","text":"running limma spline analysis, important find best “hyperparameters”. context, hyperparameters include: Degree freedom (DoF) Different versions data (e.g., outlier removed vs. removed) Different limma design formulas","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"challenge-of-hyperparameter-selection","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > Finding the Best Hyperparameters","what":"Challenge of Hyperparameter Selection","title":"get-started","text":"Rationally determining best combination hyperparameters can challenging. rationally, mean deciding upon final hyperparameters without ever testing , just scientific reasoning. much easier just testing seeing actually behave. However, manually selecting combinations can tedious, work systematically, can challenging. solve problem, screen_limma_hyperparams() function written.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"using-screen_limma_hyperparams","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > Finding the Best Hyperparameters","what":"Using screen_limma_hyperparams()","title":"get-started","text":"function screen_limma_hyperparams() automates process testing different combinations hyperparameters. ’s works: Specify values: hyperparameter, can specify values want test. Run combinations: function runs limma spline analysis combinations formed hyperparameters ’ve provided semi combinatorial way.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"inner-vs--outer-hyperparameters","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > Finding the Best Hyperparameters","what":"Inner vs. Outer Hyperparameters","title":"get-started","text":"Semi combinatorial means every possible combination generated. Instead, inner outer hyperparameters: possible combinations outer hyperparameters generated. version data (outer hyperparameter), combinations inner hyperparameters tested. approach neccessary, otherwise amount combos explode.","code":""},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"example","dir":"Articles","previous_headings":"Perform EDA (exploratory data analysis) > Finding the Best Hyperparameters","what":"Example","title":"get-started","text":"example, two versions dataset (one full dataset, one outliers removed), versions considered outer hyperparameters. Additionaly, lets say, want test two different limma design formulas, formula 1 2. function test combinations outer hyperparameters compare , results total 6 combinations : Full Dataset Formula 1 vs Full Dataset Formula 2 Full Dataset Formula 1 vs Outliers Removed Dataset Formula 1 Full Dataset Formula 1 vs Outliers Removed Dataset Formula 2 Full Dataset Formula 2 vs Outliers Removed Dataset Formula 1 Full Dataset Formula 2 vs Outliers Removed Dataset Formula 2 Outliers Removed Dataset Formula 1 vs Outliers Removed Dataset Formula 2 Let’s say specified following inner hyperparameters: Spline parameters: Natural cubic splines degree freedom either 2 3. Adjusted p-value threshold: 0.05 0.1. function generate test combinations spline parameters p-value thresholds 4 combos: Combo 1: DoF = 2, threshold = 0.05 DoF = 3, threshold = 0.05 DoF = 2, threshold = 0.1 DoF = 3, threshold = 0.1 Combo 2: DoF = 2, threshold = 0.05 DoF = 3, threshold = 0.05 DoF = 2, threshold = 0.1 DoF = 3, threshold = 0.1 Combo 3: … allows systematically explore different combinations select optimal hyperparameters analysis. example proteomics data: Now specified values hyperparameter want test, can run screen_limma_hyperparams() function. mentioned, function generates report comparison outer hyperparameters, many show . can view example report report contains results comparison “outer” hyperparameters data 1 design (formula) 1 compared data 1 design 2. , combinations “inner” hyperparameters generated (every possible combination specified adj. p-value thresholds spline configs). encoding used reports titles (part output screen_limma_hyperparams function).","code":"data1 <- data meta1 <- meta # Remove the \"outliers\" data2 <- data[, !(colnames(data) %in% c( \"E12_TP05_Exponential\", \"E10_TP10_Stationary\" ) )] # Adjust meta so that it matches data2 meta2 <- meta[!meta$`Sample.ID` %in% c( \"E12_TP05_Exponential\", \"E10_TP10_Stationary\" ), ] # As mentioned above, all the values of one hyperparameter are stored # and provided as a list. datas <- list(data1, data2) # This will be used to describe the versions of the data. datas_descr <- c( \"full_data\", \"outliers_removed\" ) metas <- list(meta1, meta2) # Test two different limma designs designs <- c( \"~ 1 + Phase*X + Reactor\", \"~ 1 + X + Reactor\" ) # Specify the meta \"level\" column condition <- \"Phase\" report_dir <- here::here( \"results\", \"hyperparams_screen_reports\" ) # To remove the batch effect meta_batch_column = \"Reactor\" # Test out two different p-value thresholds (inner hyperparameter) pthresholds <- c( 0.05, 0.1 ) # Create a dataframe with combinations of spline parameters to test # (every row a combo to test) spline_test_configs <- data.frame( # 'n' stands for natural cubic splines, b for B-splines. spline_type = c(\"n\", \"n\", \"b\", \"b\"), # Degree is not applicable (NA) for natural splines. degree = c(NA, NA, 2L, 4L), # Degrees of freedom (DoF) to test. # Higher dof means spline can fit more complex patterns. dof = c(2L, 3L, 3L, 4L) ) print(spline_test_configs) #> spline_type degree dof #> 1 n NA 2 #> 2 n NA 3 #> 3 b 2 3 #> 4 b 4 4 SplineOmics::screen_limma_hyperparams( splineomics, datas, datas_descr, metas, designs, spline_test_configs, report_dir, pthresholds, )"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"run-limma-spline-analysis","dir":"Articles","previous_headings":"","what":"Run limma spline analysis","title":"get-started","text":"identified hyperparameters likely best ones, can run limma spline analysis get results. Lets just assume now new parameters, SplineOmics object updated, best analysis. choice depends analysis. example, analysis, natural cubic splines (n) dof two seemed fit data best (overfitting, also underfitting), reason spline parameters chosen. Run run_limma_splines() function updated SplineOmics object: output function run_limma_splines() named list, element specific “category” results. Refer document explanation different result categories. elements list, containing elements respective limma topTables, either level comparison two levels. element “time_effect” list, element topTable p-value feature respective level reported. element “avrg_diff_conditions” list contains elements topTables, represent comparison average differences levels. element “interaction_condition_time” list contains elements topTables, represent interaction levels (includes time average differences)","code":"splineomics <- SplineOmics::update_splineomics( splineomics = splineomics, design = \"~ 1 + Phase*X + Reactor\", # best design formula data = data2, # data without \"outliers\" was better meta = meta2, spline_params = list( spline_type = c(\"n\"), # natural cubic splines dof = c(2L) ) ) splineomics <- SplineOmics::run_limma_splines( splineomics ) #> Interaction terms identified in limma design formula. Selecting mode == integrated. This means that all levels are analysed using the full data. #> Column 'Reactor' of meta will be used to remove the batch effect for the plotting #> Info limma spline analysis completed successfully"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"build-limma-report","dir":"Articles","previous_headings":"","what":"Build limma report","title":"get-started","text":"topTables three categories can used generate p-value histograms volcano plots. can view generated analysis report create_limma_report function .","code":"report_dir <- here::here( \"results\", \"create_limma_reports\" ) plots <- SplineOmics::create_limma_report( splineomics, report_dir = report_dir )"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"cluster-the-hits-significant-features","dir":"Articles","previous_headings":"","what":"Cluster the hits (significant features)","title":"get-started","text":"obtained limma spline results, can cluster hits based temporal pattern (spline shape). define hit setting adj. p-value threshold every level. Hits features (e.g. proteins) adj. p-value threshold. Hierarchical clustering used place every hit one many clusters specified specific level. can view generated analysis report cluster_hits function .","code":"adj_pthresholds <- c( # 0.05 for both levels 0.05, # exponential 0.05 # stationary ) clusters <- c( 6L, # 6 clusters for the exponential phase level 3L # 3 clusters for the stationary phase level ) report_dir <- here::here( \"results\", \"clustering_reports\" ) plot_info = list( # For the spline plots y_axis_label = \"log2 intensity\", time_unit = \"min\", # our measurements were in minutes treatment_labels = c(\"Feeding\"), treatment_timepoints = c(0) # Feeding was at 0 minutes. ) # Get all the gene names. They are used for generating files # which contents can be directly used as the input for the Enrichr webtool, # if you prefer to manually perform the enrichment. Those files are # embedded in the output HTML report and can be downloaded from there. gene_column_name <- \"Gene_symbol\" genes <- data_excel[[gene_column_name]][4:nrow(data_excel)] clustering_results <- SplineOmics::cluster_hits( splineomics = splineomics, # Cluster the hits from the time_effect results. You can also cluster # the hits from the other two limma result categories by specifying # it here with this argument. analysis_type = \"time_effect\", adj_pthresholds = adj_pthresholds, clusters = clusters, genes = genes, plot_info = plot_info, report_dir = report_dir, )"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"perform-gene-set-enrichment-analysis-gsea","dir":"Articles","previous_headings":"","what":"Perform gene set enrichment analysis (GSEA)","title":"get-started","text":"Usually, final step bioinformatics analysis GSEA. clustered hit, respective gene can assigned GSEA performed. , Enrichr databases choice downloaded: Per default file placed current working directory, root dir R project. run GSEA, downloaded database file loaded dataframe. , optionally, clusterProfiler parameters report dir can specified. function create_gsea_report() runs GSEA using clusterProfiler, generates HTML report returns GSEA dotplots R. function runs clusterProfiler clusters levels, generates HTML report: can view generated analysis report cluster_hits function . report first shows enrichment results, 2 genes supported term, tabular format. table terms < 2 genes supporting can downloaded clicking button table. dotplots , every row term specific database, columns respective clusters. color scale contains info odds ratio size -log10 adj. p-value. terms > 2 genes support included plot. , cluster, just maximally 5 terms shown (terms highest odds ratios). Note example cluster 1 already 5 terms, cluster 2 , gets term also found cluster 1, term included sixth term cluster 1, way maximum 5 can exceeded. phase, like stationary , lead enrichment results, stated red message.","code":"# Specify which databases you want to download from Enrichr gene_set_lib <- c( \"WikiPathways_2019_Human\", \"NCI-Nature_2016\", \"TRRUST_Transcription_Factors_2019\", \"MSigDB_Hallmark_2020\", \"GO_Cellular_Component_2018\", \"CORUM\", \"KEGG_2019_Human\", \"TRANSFAC_and_JASPAR_PWMs\", \"ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X\", \"GO_Biological_Process_2018\", \"GO_Molecular_Function_2018\", \"Human_Gene_Atlas\" ) SplineOmics::download_enrichr_databases(gene_set_lib) # Specify the filepath of the TSV file with the database info downloaded_dbs_filepath <- here::here(\"all_databases_08_04_2024-12_41_50.tsv\") # Load the file databases <- read.delim( downloaded_dbs_filepath, sep = \"\\t\", stringsAsFactors = FALSE ) # Specify the clusterProfiler parameters clusterProfiler_params <- list( adj_p_value = 0.05, pAdjustMethod = \"BH\", minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2 ) report_dir <- here::here( \"results\", \"gsea_reports\" ) result <- SplineOmics::run_gsea( # A dataframe with three columns: feature, cluster, and gene. Feature contains # the integer index of the feature, cluster the integer specifying the cluster # number, and gene the string of the gene, such as \"CLSTN2\". levels_clustered_hits = clustering_results$clustered_hits_levels, databases = databases, clusterProfiler_params = clusterProfiler_params, report_info = report_info, report_dir = report_dir )"},{"path":"https://csbg.github.io/SplineOmics/articles/get-started.html","id":"conclusion","dir":"Articles","previous_headings":"","what":"Conclusion","title":"get-started","text":"example showed functionalities SplineOmics package. can also run datatypes , including timeseries RNA-seq glycan data (, refer documentation README file GitHub page Usage/RNA-seq Glycan Data). get interactive version example, download SplineOmics package run function open_tutorial() opens R Markdown file, can run different code blocks working R Studio (recommendet) can easily check values individual variables generate output reports . run function open_template() get minimal R Markdown file, code written can use skeleton plug data run . hope SplineOmics package makes scientific data analysis easier. face problems (bugs code) satisfied documentation, open issue GitHub check options Feedback section README GitHub. Thank !","code":""},{"path":"https://csbg.github.io/SplineOmics/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Thomas Rauter. Maintainer.","code":""},{"path":"https://csbg.github.io/SplineOmics/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Rauter T (2024). SplineOmics: Streamlines process analysing omics timeseries data splines. R package version 0.1.0, https://csbg.github.io/SplineOmics.","code":"@Manual{, title = {SplineOmics: Streamlines the process of analysing omics timeseries data with splines}, author = {Thomas Rauter}, year = {2024}, note = {R package version 0.1.0}, url = {https://csbg.github.io/SplineOmics}, }"},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"splineomics","dir":"","previous_headings":"","what":"Streamlines the process of analysing omics timeseries data with splines","title":"Streamlines the process of analysing omics timeseries data with splines","text":"R package SplineOmics finds significant features (hits) time-series -omics data using splines limma hypothesis testing. clusters hits based spline shape showing results summary HTML reports. graphical abstract shows full workflow streamlined SplineOmics: Graphical Abstract SplineOmics Workflow","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"table-of-contents","dir":"","previous_headings":"","what":"Table of Contents","title":"Streamlines the process of analysing omics timeseries data with splines","text":"📘 Introduction 🐳 Docker Container Tutorial Functions Depth RNA-seq Glycan Data 📦 Dependencies 📚 Reading ❓ Getting Help 🤝 Contributing 💬 Feedback 📜 License 🎓 Citation 🌟 Contributors 🙏 Acknowledgements","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-introduction","dir":"","previous_headings":"","what":"📘 Introduction","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Welcome SplineOmics, R package designed streamline analysis -omics time-series data, followed automated HTML report generation.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"is-the-splineomics-package-of-use-for-me","dir":"","previous_headings":"📘 Introduction","what":"Is the SplineOmics package of use for me?","title":"Streamlines the process of analysing omics timeseries data with splines","text":"-omics data time, package help run limma splines, decide parameters use, perform clustering, run GSEA show result plots HTML reports. time-series data valid input limma package also valid input SplineOmics package (transcriptomics, proteomics, phosphoproteomics, metabolomics, glycan fractional abundances, etc.).","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"what-do-i-need-precisely","dir":"","previous_headings":"📘 Introduction","what":"What do I need precisely?","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Data: data matrix row feature (e.g., protein, metabolite, etc.) column sample taken specific time. Meta: table metadata columns/samples data matrix (e.g., batch, time point, etc.) Annotation: table identifiers rows/features data matrix (e.g., gene protein name).","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"capabilities","dir":"","previous_headings":"📘 Introduction","what":"Capabilities","title":"Streamlines the process of analysing omics timeseries data with splines","text":"SplineOmics, can: Automatically perform exploratory data analysis: explore_data() function generates HTML report, containing various plots, density, PCA, correlation heatmap plots (example report). Explore various limma splines hyperparameters: Test combinations hyperparameters, different datasets, limma design formulas, degrees freedom, p-value thresholds, etc., using screen_limma_hyperparams() function (example report (along encoding)). Perform limma spline analysis: Use run_limma_splines() function perform limma analysis splines optimal hyperparameters identified (example report). Cluster significant features: Cluster significant features (hits) identified spline analysis cluster_hits() function (example report). Run GSEA clustered hits: Perform gene set enrichment analysis (GSEA) using clustered hits create_gsea_report() function (example report).","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-installation","dir":"","previous_headings":"","what":"🔧 Installation","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Follow steps install SplineOmics package GitHub repository R environment.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"prerequisites","dir":"","previous_headings":"🔧 Installation","what":"Prerequisites","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Ensure R installed system. , download install CRAN. RStudio recommended user-friendly experience R. Download install RStudio posit.co.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"installation-steps","dir":"","previous_headings":"🔧 Installation","what":"Installation Steps","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Open RStudio R console. Install SplineOmics GitHub dependencies. Copy paste following code block R console run script. Note Windows Users: Please read text code block running ! Note installation paths writable Windows, necessary running RStudio administrator installation. Otherwise, set library path (code block ) installation (re)run code block . Load SplineOmics package: installation complete, load SplineOmics package R session script start using :","code":"# Function to ensure a package is installed ensure_installed <- function(pkg) { if (!requireNamespace(pkg, quietly = TRUE)) { install.packages(pkg) } } # Install packages if not already available ensure_installed(\"BiocManager\") ensure_installed(\"remotes\") # Load packages library(BiocManager) library(remotes) # Install Bioconductor dependencies BiocManager::install(c( \"ComplexHeatmap\", \"limma\" ), force = TRUE) # Install SplineOmics from GitHub remotes::install_github( \"csbg/SplineOmics@ad35d9aef2e8a8b19572c83ec771f4d92b343a4e\", dependencies = TRUE, # Install all dependencies force = TRUE, # Force reinstallation upgrade = \"always\", # Always upgrade dependencies ) # Verify the installation if (\"SplineOmics\" %in% rownames(installed.packages())) { message(\"SplineOmics installed successfully.\") } else { message(\"SplineOmics installation failed.\") } # Create a directory for R libraries dir.create(\"~/Rlibs\", showWarnings = FALSE) # Set the library path to include the new directory .libPaths(c(\"~/Rlibs\", .libPaths())) library(SplineOmics)"},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"troubleshooting","dir":"","previous_headings":"🔧 Installation","what":"Troubleshooting","title":"Streamlines the process of analysing omics timeseries data with splines","text":"encounter errors related dependencies package versions installation, try updating R RStudio latest versions repeat installation steps. issues specifically related SplineOmics package, check Issues section GitHub repository similar problems post new issue.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-docker-container","dir":"","previous_headings":"🔧 Installation","what":"🐳 Docker Container","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Alternatively, can run analysis Docker container. underlying Docker image encapsulates SplineOmics package together necessary environment dependencies. ensures higher levels reproducibility analysis carried consistent environment, independent operating system custom configurations. information Docker containers can found official Docker page. instructions downloading image SplineOmics package running container, please refer Docker instructions.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"troubleshooting-1","dir":"","previous_headings":"🔧 Installation > 🐳 Docker Container","what":"Troubleshooting","title":"Streamlines the process of analysing omics timeseries data with splines","text":"face “permission denied” issues Linux distributions, check vignette.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"tutorial","dir":"","previous_headings":"▶️ Usage","what":"Tutorial","title":"Streamlines the process of analysing omics timeseries data with splines","text":"tutorial covers real CHO cell time-series proteomics example start end. open R Markdown file tutorial RStudio, run: open R Markdown file RStudio containing template analysis, run:","code":"library(SplineOmics) open_tutorial() library(SplineOmics) open_template()"},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"functions-in-depth","dir":"","previous_headings":"▶️ Usage","what":"Functions in Depth","title":"Streamlines the process of analysing omics timeseries data with splines","text":"detailed description arguments outputs functions package (exported internal functions) can found .","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"design-limma-design-formula","dir":"","previous_headings":"▶️ Usage","what":"Design limma design formula","title":"Streamlines the process of analysing omics timeseries data with splines","text":"quick guide design limma design formula can found explanation three different limma results ","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"rna-seq-data","dir":"","previous_headings":"▶️ Usage > RNA-seq and Glycan Data","what":"RNA-seq data","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Transcriptomics data must preprocessed limma. need provide appropriate object, voom object, rna_seq_data argument SplineOmics object (see documentation). Along , normalized matrix (e.g., $E slot voom object) must passed data argument. allows flexibility preprocessing; can use method prefer long final object matrix compatible limma. One way preprocess RNA-seq data using preprocess_rna_seq_data() function included SplineOmics package (see documentation).","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"glycan-fractional-abundance-data","dir":"","previous_headings":"▶️ Usage > RNA-seq and Glycan Data","what":"Glycan fractional abundance data","title":"Streamlines the process of analysing omics timeseries data with splines","text":"glycan fractional abundance data matrix, row represents type glycan columns correspond timepoints, must transformed analysis. preprocessing step essential due compositional nature data. compositional data, increase abundance one component (glycan) necessarily results decrease others, introducing dependency among variables can bias analysis. One way address issue applying Centered Log Ratio (CLR) transformation data clr function compositions package:","code":"library(compositions) clr_transformed_data <- clr(data_matrix) # use as SplineOmics input"},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-dependencies","dir":"","previous_headings":"","what":"📦 Dependencies","title":"Streamlines the process of analysing omics timeseries data with splines","text":"SplineOmics package relies several R packages functionality. list dependencies automatically installed along SplineOmics. already packages installed, ensure date avoid compatibility issues. ComplexHeatmap: creating complex heatmaps advanced features. base64enc: encoding/decoding base64. dendextend: extending dendrogram objects R, allowing easier manipulation dendrograms. dplyr: data manipulation. ggplot2: creating elegant data visualizations using grammar graphics. ggrepel: better label placement ggplot2. : constructing paths project’s files. limma: linear models microarray data. openxlsx: reading, writing, editing xlsx files. patchwork: combining multiple ggplot objects single plot. pheatmap: creating pretty heatmaps. progress: adding progress bars loops apply functions. purrr: functional programming tools. rlang: tools work core language features R R’s base types. scales: scale functions visualization. tibble: creating tidy data frames easy work . tidyr: tidying data. zip: combining files zip file.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"optional-dependencies","dir":"","previous_headings":"📦 Dependencies","what":"Optional dependencies","title":"Streamlines the process of analysing omics timeseries data with splines","text":"dependencies necessary functions: edgeR: preprocessing RNA-seq data run_limma_splines() fun. clusterProfiler: run_gsea() function (gene set enrichment). rstudioapi: open_tutorial() open_template() functions.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"r-version","dir":"","previous_headings":"📦 Dependencies","what":"R Version","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Recommended: R 4.3.3 higher","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-further-reading","dir":"","previous_headings":"","what":"📚 Further Reading","title":"Streamlines the process of analysing omics timeseries data with splines","text":"interested gaining deeper understanding methodologies used SplineOmics package, recommended publications: Splines: learn splines, can refer review. limma: read limma R package, can refer publication. Hierarchical clustering: get information hierarchical clustering, can refer web article.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-getting-help","dir":"","previous_headings":"","what":"❓ Getting Help","title":"Streamlines the process of analysing omics timeseries data with splines","text":"encounter bug suggestion improving SplineOmics package, encourage open issue GitHub repository. opening new issue, please check see question bug already reported another user. helps avoid duplicate reports ensures can address problems efficiently. detailed questions, discussions, contributions regarding package’s use development, please refer GitHub Discussions page SplineOmics.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-contributing","dir":"","previous_headings":"","what":"🤝 Contributing","title":"Streamlines the process of analysing omics timeseries data with splines","text":"welcome contributions SplineOmics package! Whether ’re interested fixing bugs, adding new features, improving documentation, help greatly appreciated. ’s can contribute: Report Bug Request Feature: encounter bug idea new feature, please open issue GitHub repository. opening new issue, check see issue already reported feature requested another user. Submit Pull Request: ’ve developed bug fix new feature ’d like share, submit pull request. Improve Documentation: Good documentation crucial project. notice missing incorrect documentation, please feel free contribute. Please adhere Code Conduct interactions project. Thank considering contributing SplineOmics. efforts make open-source community fantastic place learn, inspire, create.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-feedback","dir":"","previous_headings":"","what":"💬 Feedback","title":"Streamlines the process of analysing omics timeseries data with splines","text":"appreciate feedback! Besides raising issues, can provide feedback following ways: Direct Email: Send feedback directly Thomas Rauter. Anonymous Feedback: Use Google Form provide anonymous feedback answering questions. feedback helps us improve project address issues may encounter.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-license","dir":"","previous_headings":"","what":"📜 License","title":"Streamlines the process of analysing omics timeseries data with splines","text":"package licensed MIT License: LICENSE © 2024 Thomas Rauter. rights reserved.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-citation","dir":"","previous_headings":"","what":"🎓 Citation","title":"Streamlines the process of analysing omics timeseries data with splines","text":"SplineOmics package currently published peer-reviewed scientific journal similar outlet. However, package helped work, consider citing GitHub repository. cite package, can use citation information provided inst/CITATION.cff file. can also generate citation various formats using CITATION.cff file visiting top right repo clicking “Cite repository” button. Also, like package, consider giving GitHub repository star. support helps us continued development improvement SplineOmics. Thank using package!","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-contributors","dir":"","previous_headings":"","what":"🌟 Contributors","title":"Streamlines the process of analysing omics timeseries data with splines","text":"Thomas-Rauter - 🚀 Wrote package, developed approach together VSchaepertoens guidance nfortelny skafdasschaf. nfortelny - 🧠 Principal Investigator, provided guidance support overall approach. skafdasschaf - 🔧 Helped reviewing code, delivered improvement suggestions scientific guidance develop approach. VSchaepertoens - ✨ Developed one internal plotting function, well code exploratory data analysis plots, overall approach together Thomas-Rauter.","code":""},{"path":"https://csbg.github.io/SplineOmics/index.html","id":"id_-acknowledgements","dir":"","previous_headings":"","what":"🙏 Acknowledgements","title":"Streamlines the process of analysing omics timeseries data with splines","text":"work carried context DigiTherapeutX project, funded Austrian Science Fund (FWF). research conducted supervision Prof. Nikolaus Fortelny, leads Computational Systems Biology working group Paris Lodron University Salzburg, Austria. can find information Prof. Fortelny’s research group .","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":null,"dir":"Reference","previous_headings":"","what":"InputControl: A class for controlling and validating inputs — InputControl","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"InputControl: class controlling validating inputs InputControl: class controlling validating inputs","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"class provides methods validate inputs function. method performs following checks: * Ensures `annotation` `data` provided. * Confirms `annotation` dataframe. * Verifies `annotation` `data` number rows. checks fail, informative error message returned. - method first checks lengths designs modes equal. , raises error. - checks modes NULL, , method returns without performing checks. - mode modes, method sets self$args$mode current mode calls self$check_mode(). function performs following checks: - `clusters` integer vector integers. Otherwise, gives error. Check Plot Info method performs following checks: * Ensures `plot_info` provided NULL. * Confirms `y_axis_label` character vector maximally 30 characters. * Confirms `time_unit` character vector maximally 15 characters. * Validates `treatment_labels` either `NA` character vector element maximally 15 characters long. * Validates `treatment_timepoints` either `NA` numeric vector length `treatment_labels` `treatment_labels` `NA`. checks fail, informative error message returned. method performs following checks: * Ensures `analysis_mode` provided NULL. * Confirms `analysis_mode` character vector length 1. * Validates `analysis_mode` matches one allowed values. checks fail, informative error message returned. function performs following checks: 1. Ensures `feature_name_columns` `annotation` `NULL`. 2. Verifies element `feature_name_columns` character length 1. 3. Checks elements `feature_name_columns` valid column names `annotation` data frame. Check Report function performs following checks: - Whether `report` argument present. - `report` Boolean value (`TRUE` `FALSE`), throws error.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"functions","dir":"Reference","previous_headings":"","what":"Functions","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"InputControl: method verifies spline test configurations associated metadata within object's arguments. performs series checks configurations, including column verification, spline type validation, ensuring degrees freedom (dof) within acceptable ranges.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"SplineOmics::Level4Functions -> SplineOmics::Level3Functions -> SplineOmics::Level2Functions -> InputControl","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"public-fields","dir":"Reference","previous_headings":"","what":"Public fields","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"args list arguments validated. Initialize InputControl object","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"SplineOmics::Level4Functions$create_error_message() SplineOmics::Level3Functions$check_batch_column() SplineOmics::Level3Functions$check_condition_time_consistency() SplineOmics::Level3Functions$check_voom_structure() SplineOmics::Level2Functions$check_columns() SplineOmics::Level2Functions$check_columns_spline_test_configs() SplineOmics::Level2Functions$check_data() SplineOmics::Level2Functions$check_dataframe() SplineOmics::Level2Functions$check_max_and_min_dof() SplineOmics::Level2Functions$check_meta() SplineOmics::Level2Functions$check_spline_params_generally() SplineOmics::Level2Functions$check_spline_params_mode_dependent() SplineOmics::Level2Functions$check_spline_type_column() SplineOmics::Level2Functions$check_spline_type_params()","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"InputControl$new() InputControl$auto_validate() InputControl$check_data_and_meta() InputControl$check_annotation() InputControl$check_datas_and_metas() InputControl$check_datas_descr() InputControl$check_top_tables() InputControl$check_mode() InputControl$check_modes() InputControl$check_design_formula() InputControl$check_designs_and_metas() InputControl$check_spline_params() InputControl$check_spline_test_configs() InputControl$check_limma_top_tables() InputControl$check_adj_pthresholds() InputControl$check_clusters() InputControl$check_plot_info() InputControl$check_report_dir() InputControl$check_genes() InputControl$check_padjust_method() InputControl$check_report_info() InputControl$check_analysis_type() InputControl$check_feature_name_columns() InputControl$check_report() InputControl$clone()","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$new(args)"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"args list arguments validated.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"new instance InputControl class. Automatically Validate Arguments method automatically validates arguments sequentially calling various validation methods defined within class. validation method checks specific aspects input arguments raises error validation fails. following validation methods called sequence: - self$check_data_and_meta() - self$check_datas_and_metas() - self$check_datas_descr() - self$check_mode() - self$check_modes() - self$check_design_formula() - self$check_designs_and_metas() - self$check_spline_params() - self$check_spline_test_configs() - self$check_adj_pthresholds() - self$check_clusters() - self$check_time_unit() - self$check_report_dir() - self$check_padjust_method() - self$check_report_info() - self$check_report() - self$check_feature_name_columns()","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$auto_validate()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-1","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL. function used side effects validating input arguments raising errors validation fails. Check Data Meta","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-data-and-meta-","dir":"Reference","previous_headings":"","what":"Method check_data_and_meta()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks validity data meta objects, ensuring data matrix numeric values meta dataframe containing specified condition column. Additionally, verifies number columns data matrix matches number rows meta dataframe.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_data_and_meta()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"data matrix containing numeric values. meta dataframe containing metadata, including 'Time' column specified condition column. condition single character string specifying column name meta dataframe checked. meta_batch_column optional parameter specifying column name meta dataframe used remove batch effect. Default NA. data_meta_index optional parameter specifying index data/meta pair error messages. Default NA.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-2","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns TRUE checks pass. Stops execution returns error message check fails. Check Annotation Consistency","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-annotation-","dir":"Reference","previous_headings":"","what":"Method check_annotation()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"method checks consistency annotation data. ensures annotation dataframe number rows data.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-3","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_annotation()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-3","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL required arguments missing. Otherwise, performs checks potentially raises errors checks fail. Check Multiple Data Meta Pairs","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-datas-and-metas-","dir":"Reference","previous_headings":"","what":"Method check_datas_and_metas()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Iterates multiple data meta pairs validate pair using `check_data_and_meta` function.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-4","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_datas_and_metas()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-2","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"datas list matrices containing numeric values. metas list data frames containing metadata. condition character string specifying column name meta dataframe checked. meta_batch_column optional parameter specifying column name meta dataframe used remove batch effect. Default NA. meta_batch2_column optional parameter specifying column name meta dataframe used remove second batch effect. Default NA.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-4","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL check fails, otherwise returns TRUE. Check Data Descriptions","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-datas-descr-","dir":"Reference","previous_headings":"","what":"Method check_datas_descr()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates data descriptions character vectors element exceeding 80 characters length.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-5","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_datas_descr()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-3","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"datas_descr character vector data descriptions.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-5","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"return value, called side effects.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-top-tables-","dir":"Reference","previous_headings":"","what":"Method check_top_tables()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates top tables list dataframes checks dataframe using `check_dataframe` function.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-6","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_top_tables()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-4","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"top_tables list top tables limma analysis.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-6","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"return value, called side effects. Check Mode","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-mode-","dir":"Reference","previous_headings":"","what":"Method check_mode()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates mode either 'integrated' 'isolated', depends design formula used limma.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-7","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_mode()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-5","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"mode character string specifying mode.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-7","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"message indicating chosen mode valid; otherwise, error thrown.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-8","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_modes()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-8","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL. function used side effects validating mode raising errors validation fails. Check Design Formula","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-design-formula-","dir":"Reference","previous_headings":"","what":"Method check_design_formula()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates design formula ensuring valid character string, contains allowed characters, includes intercept term 'X', references columns present metadata.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-9","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_design_formula()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-6","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"formula character string representing design formula. meta data frame containing metadata. meta_index optional index data/meta pair.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-9","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"TRUE design formula valid, otherwise error thrown.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-designs-and-metas-","dir":"Reference","previous_headings":"","what":"Method check_designs_and_metas()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Iterates multiple design formulas corresponding metadata validate pair using `check_design_formula` function.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-10","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_designs_and_metas()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-7","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"designs vector character strings representing design formulas. metas list data frames containing metadata. meta_indices vector optional indices data/meta pairs.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-10","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL check fails, otherwise returns TRUE. Check Spline Parameters","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-spline-params-","dir":"Reference","previous_headings":"","what":"Method check_spline_params()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates spline parameters generally depending specified mode.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-11","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_spline_params()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-8","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"spline_params list spline parameters. mode character string specifying mode ('integrated' 'isolated'). meta dataframe containing metadata. condition character string specifying condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-11","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns `NULL` required arguments mising, otherwise, called side effects. Check Spline Test Configurations","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-12","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_spline_test_configs()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-9","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"spline_test_configs configuration object spline tests. metas list metadata corresponding data matrices.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-12","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns `NULL` required arguments mising, otherwise, called side effects. Check Limma Top Tables Structure function checks provided limma top tables data structure correctly formatted. ensures data structure contains exactly three named elements ('time_effect', 'avrg_diff_conditions', 'interaction_condition_time') element contains dataframes correct columns data types.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-13","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_limma_top_tables()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-10","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"self object containing data structure check.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-13","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function return value. stops execution data structure match expected format. Check Adjusted p-Thresholds","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-adj-pthresholds-","dir":"Reference","previous_headings":"","what":"Method check_adj_pthresholds()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks validity adjusted p-thresholds vector, ensuring elements numeric, greater 0, less 1. conditions met, function stops execution returns error message indicating offending elements.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-14","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_adj_pthresholds()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-11","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"adj_pthresholds numeric vector adjusted p-thresholds.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-14","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns TRUE checks pass. Stops execution returns error message check fails. Check Clusters","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-clusters-","dir":"Reference","previous_headings":"","what":"Method check_clusters()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function verifies cluster configurations within object's arguments. checks clusters argument present performs validation content. clusters specified, defaults automatic cluster estimation.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-15","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_clusters()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-plot-info-","dir":"Reference","previous_headings":"","what":"Method check_plot_info()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"method checks validity `plot_info` list. ensures `y_axis_label` `time_unit` meet length constraints, `treatment_labels` either `NA` character vector elements meeting length constraint, `treatment_timepoints` either `NA` numeric vector length `treatment_labels`.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-16","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_plot_info()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-15","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL `plot_info` provided invalid. Otherwise, performs checks potentially raises errors checks fail. Check Create Report Directory","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-report-dir-","dir":"Reference","previous_headings":"","what":"Method check_report_dir()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks specified report directory exists valid directory. directory exist, attempts create . warnings errors directory creation, function stops execution returns error message.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-17","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_report_dir()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-12","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"report_dir character string specifying path report directory.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-16","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns TRUE directory exists successfully created. Stops execution returns error message directory created valid. Check Genes Validity","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-genes-","dir":"Reference","previous_headings":"","what":"Method check_genes()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks validity `data` `genes` arguments within `self$args` list. ensures `genes` character vector, neither `data` `genes` `NULL`, length `genes` matches number rows `data`.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-18","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_genes()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-17","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns `TRUE` checks pass. Returns `NULL` required arguments `NULL`. Throws error `genes` character vector length `genes` match number rows `data`. Check p-Adjustment Method","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-padjust-method-","dir":"Reference","previous_headings":"","what":"Method check_padjust_method()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks provided p-adjustment method valid. valid methods : \"holm\", \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\". method one , function stops execution returns error message.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-19","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_padjust_method()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-13","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"padjust_method character string specifying p-adjustment method. Valid options \"holm\", \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\", \"none\".","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-18","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns TRUE p-adjustment method valid. Stops execution returns error message method invalid. Check Report Information","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-report-info-","dir":"Reference","previous_headings":"","what":"Method check_report_info()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Validates report information ensure contains mandatory fields adheres required formats.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-20","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_report_info()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-14","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"report_info named list containing report information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-19","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"TRUE report information valid; otherwise, error thrown. Check Analysis Mode","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-analysis-type-","dir":"Reference","previous_headings":"","what":"Method check_analysis_type()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"method checks validity `analysis_mode` argument. ensures `analysis_mode` character vector length 1 matches one allowed analysis modes: \"time_effect\", \"avrg_diff_conditions\", \"interaction_condition_time\".","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-21","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_analysis_type()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-20","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"NULL `analysis_mode` provided invalid. Otherwise, performs checks potentially raises errors checks fail. Check Feature Name Columns","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-feature-name-columns-","dir":"Reference","previous_headings":"","what":"Method check_feature_name_columns()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function checks whether elements `feature_name_columns` characters length 1 whether valid column names `annotation` data frame.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-22","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_feature_name_columns()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"returns-21","dir":"Reference","previous_headings":"","what":"Returns","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"Returns `NULL` required arguments missing. Throws error element `feature_name_columns` character length 1 element column name `annotation`. Returns `TRUE` checks pass.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-check-report-","dir":"Reference","previous_headings":"","what":"Method check_report()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"function verifies `report` argument within object's arguments. checks `report` argument present validates Boolean value.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-23","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$check_report()"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"objects class cloneable method.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"usage-24","dir":"Reference","previous_headings":"","what":"Usage","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"","code":"InputControl$clone(deep = FALSE)"},{"path":"https://csbg.github.io/SplineOmics/reference/InputControl.html","id":"arguments-15","dir":"Reference","previous_headings":"","what":"Arguments","title":"InputControl: A class for controlling and validating inputs — InputControl","text":"deep Whether make deep clone.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":null,"dir":"Reference","previous_headings":"","what":"Level2Functions: A class providing level 2 functionalities — Level2Functions","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Level2Functions: class providing level 2 functionalities Level2Functions: class providing level 2 functionalities","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"class provides various level 2 functionalities, including methods check dataframes spline parameters.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"SplineOmics::Level4Functions -> SplineOmics::Level3Functions -> Level2Functions","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"SplineOmics::Level4Functions$create_error_message() SplineOmics::Level3Functions$check_batch_column() SplineOmics::Level3Functions$check_condition_time_consistency() SplineOmics::Level3Functions$check_voom_structure()","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Level2Functions$check_data() Level2Functions$check_meta() Level2Functions$check_dataframe() Level2Functions$check_spline_params_generally() Level2Functions$check_spline_params_mode_dependent() Level2Functions$check_columns_spline_test_configs() Level2Functions$check_spline_type_column() Level2Functions$check_spline_type_params() Level2Functions$check_max_and_min_dof() Level2Functions$check_columns() Level2Functions$clone()","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-check-data-","dir":"Reference","previous_headings":"","what":"Method check_data()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"function checks validity data matrix, ensuring matrix, contains numeric values, missing values, elements non-negative. Additionally, verifies rows columns entirely zeros.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_data(data, data_meta_index = NULL)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"data dataframe containing numeric values. data_meta_index optional parameter specifying index data error messages. Default NA.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Returns TRUE checks pass. Stops execution returns error message check fails. Check Metadata","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-check-meta-","dir":"Reference","previous_headings":"","what":"Method check_meta()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"function checks validity metadata dataframe, ensuring contains 'Time' column, contain missing values, specified condition column valid appropriate type. Additionally, checks optional batch effect column prints messages regarding use.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_meta( meta, condition, meta_batch_column = NULL, meta_batch2_column = NULL, data_meta_index = NULL )"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"meta dataframe containing metadata, including 'Time' column. condition single character string specifying column name meta dataframe checked. meta_batch_column optional parameter specifying column name meta dataframe used remove batch effect. Default NA. meta_batch2_column optional parameter specifying column name meta dataframe used remove batch effect. Default NA. data_meta_index optional parameter specifying index data/meta pair error messages. Default NA.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns-1","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Returns TRUE checks pass. Stops execution returns error message check fails. Check Dataframe","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-check-dataframe-","dir":"Reference","previous_headings":"","what":"Method check_dataframe()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates dataframe contains required columns correct data types.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_dataframe(df)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-2","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"df dataframe check.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns-2","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"TRUE dataframe valid, otherwise error thrown. Check Spline Parameters Generally","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-check-spline-params-generally-","dir":"Reference","previous_headings":"","what":"Method check_spline_params_generally()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates general structure contents spline parameters.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-3","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_spline_params_generally(spline_params)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-3","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_params list spline parameters.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns-3","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects. Check Spline Parameters Mode Dependent","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-check-spline-params-mode-dependent-","dir":"Reference","previous_headings":"","what":"Method check_spline_params_mode_dependent()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates spline parameters depending specified mode.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-4","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_spline_params_mode_dependent( spline_params, mode, meta, condition )"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-4","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_params list spline parameters. mode character string specifying mode ('integrated' 'isolated'). meta dataframe containing metadata. condition character string specifying condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns-4","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects. Check Columns Spline Test Configurations","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-check-columns-spline-test-configs-","dir":"Reference","previous_headings":"","what":"Method check_columns_spline_test_configs()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates spline test configurations contain required columns correct order.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-5","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_columns_spline_test_configs(spline_test_configs)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-5","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_test_configs dataframe containing spline test configurations.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns-5","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-check-spline-type-column-","dir":"Reference","previous_headings":"","what":"Method check_spline_type_column()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates 'spline_type' column spline test configurations contains 'n' 'b'.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-6","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_spline_type_column(spline_test_configs)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-6","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_test_configs dataframe containing spline test configurations.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns-6","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-check-spline-type-params-","dir":"Reference","previous_headings":"","what":"Method check_spline_type_params()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates parameters row spline test configurations based spline type.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-7","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_spline_type_params(spline_test_configs)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-7","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_test_configs dataframe containing spline test configurations.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns-7","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"TRUE checks pass, otherwise error thrown.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-check-max-and-min-dof-","dir":"Reference","previous_headings":"","what":"Method check_max_and_min_dof()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"Validates degrees freedom (DoF) row spline test configurations based metadata.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-8","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_max_and_min_dof(spline_test_configs, metas)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-8","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"spline_test_configs dataframe containing spline test configurations. metas list metadata corresponding data matrices.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns-8","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"return value, called side effects.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-9","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$check_columns(df, expected_cols)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-9","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"df dataframe check. expected_cols character vector expected column names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"returns-9","dir":"Reference","previous_headings":"","what":"Returns","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"function return value. stops execution dataframe columns classes match expected structure.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"objects class cloneable method.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"usage-10","dir":"Reference","previous_headings":"","what":"Usage","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"","code":"Level2Functions$clone(deep = FALSE)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level2Functions.html","id":"arguments-10","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level2Functions: A class providing level 2 functionalities — Level2Functions","text":"deep Whether make deep clone.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":null,"dir":"Reference","previous_headings":"","what":"Level3Functions: A class for level 3 utility functions — Level3Functions","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"Level3Functions: class level 3 utility functions Level3Functions: class level 3 utility functions","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"class provides methods creating error messages checking batch columns. function verifies `voom` object contains following components: - `E`: matrix log2-counts per million (logCPM) values. - `weights`: matrix observation-specific weights matches dimensions `E`. - `design`: matrix representing design matrix used linear modeling, number rows columns `E`. function also checks optional components : - `genes`: data frame gene annotations. - `targets`: data frame target information. - `sample.weights`: numeric vector sample-specific weights. checks fail, function stops reports issues. structure valid, message confirming validity printed.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"SplineOmics::Level4Functions -> Level3Functions","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"SplineOmics::Level4Functions$create_error_message()","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"Level3Functions$check_voom_structure() Level3Functions$check_batch_column() Level3Functions$check_condition_time_consistency() Level3Functions$clone()","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"method-check-voom-structure-","dir":"Reference","previous_headings":"","what":"Method check_voom_structure()","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"function checks structure `voom` object ensure contains expected components components correct types dimensions. function check actual data within matrices.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"","code":"Level3Functions$check_voom_structure(voom_obj)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"voom_obj list representing `voom` object, typically created `voom` function `limma` package.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"Boolean TRUE FALSE. However, function mostly called side effects, stop script structure valid. Check Batch Column","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"method-check-batch-column-","dir":"Reference","previous_headings":"","what":"Method check_batch_column()","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"method checks batch column metadata provides appropriate messages.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"","code":"Level3Functions$check_batch_column(meta, meta_batch_column, data_meta_index)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"meta dataframe containing metadata. meta_batch_column character string specifying batch column metadata. data_meta_index optional parameter specifying index data/meta pair. Default NA.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"returns-1","dir":"Reference","previous_headings":"","what":"Returns","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"NULL. method used side effects throwing errors printing messages. Check Condition Time Consistency","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"method-check-condition-time-consistency-","dir":"Reference","previous_headings":"","what":"Method check_condition_time_consistency()","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"function checks whether values `condition` column unique values block identical `Time` values `meta` dataframe. Additionally, ensures every new block given time new value `condition` column.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"","code":"Level3Functions$check_condition_time_consistency(meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"arguments-2","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"meta dataframe containing metadata, including `Time` column. condition character string specifying column name `meta` used define groups analysis.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"returns-2","dir":"Reference","previous_headings":"","what":"Returns","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"Logical TRUE condition values consistent time series pattern.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"objects class cloneable method.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"usage-3","dir":"Reference","previous_headings":"","what":"Usage","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"","code":"Level3Functions$clone(deep = FALSE)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level3Functions.html","id":"arguments-3","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level3Functions: A class for level 3 utility functions — Level3Functions","text":"deep Whether make deep clone.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":null,"dir":"Reference","previous_headings":"","what":"Level4Functions: A class for level 3 utility functions — Level4Functions","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"Level4Functions: class level 3 utility functions Level4Functions: class level 3 utility functions","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"class provides methods creating error messages checking batch columns.","code":""},{"path":[]},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"Level4Functions$create_error_message() Level4Functions$clone()","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":"method-create-error-message-","dir":"Reference","previous_headings":"","what":"Method create_error_message()","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"method creates formatted error message includes index data/meta pair provided. index provided, returns message .","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"","code":"Level4Functions$create_error_message(message, data_meta_index = NULL)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"message character string specifying error message. data_meta_index optional parameter specifying index data/meta pair error message. Default NA.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"Returns formatted error message string. index provided, message includes index; otherwise, returns message .","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"objects class cloneable method.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"","code":"Level4Functions$clone(deep = FALSE)"},{"path":"https://csbg.github.io/SplineOmics/reference/Level4Functions.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Level4Functions: A class for level 3 utility functions — Level4Functions","text":"deep Whether make deep clone.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":null,"dir":"Reference","previous_headings":"","what":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"class provides methods identify upper-left lower-right cells numeric block within dataframe.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"public-fields","dir":"Reference","previous_headings":"","what":"Public fields","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"data dataframe containing input data. upper_left_cell list containing row column indices upper-left cell. Initialize NumericBlockFinder object","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"NumericBlockFinder$new() NumericBlockFinder$find_upper_left_cell() NumericBlockFinder$find_lower_right_cell() NumericBlockFinder$clone()","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"","code":"NumericBlockFinder$new(data)"},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"data dataframe containing input data.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"returns","dir":"Reference","previous_headings":"","what":"Returns","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"new instance NumericBlockFinder class. Find upper-left cell first 6x6 block numeric values method identifies upper-left cell first 6x6 block numeric values dataframe.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"","code":"NumericBlockFinder$find_upper_left_cell()"},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"returns-1","dir":"Reference","previous_headings":"","what":"Returns","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"list containing row column indices upper-left cell. Find lower-right cell block contiguous non-NA values method identifies lower-right cell block contiguous non-NA values starting given upper-left cell dataframe.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"","code":"NumericBlockFinder$find_lower_right_cell()"},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"returns-2","dir":"Reference","previous_headings":"","what":"Returns","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"list containing row column indices lower-right cell.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"objects class cloneable method.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"usage-3","dir":"Reference","previous_headings":"","what":"Usage","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"","code":"NumericBlockFinder$clone(deep = FALSE)"},{"path":"https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"NumericBlockFinder: A class for finding numeric blocks in data — NumericBlockFinder","text":"deep Whether make deep clone.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html","id":null,"dir":"Reference","previous_headings":"","what":"Package Name: SplineOmics — SplineOmics-package","title":"Package Name: SplineOmics — SplineOmics-package","text":"R package SplineOmics finds significant features (hits) time-series -omics data using splines limma hypothesis testing. clusters hits based spline shape showing results summary HTML reports. detailed documentation, vignettes, examples, please visit [SplineOmics GitHub page](https://github.com/csbg/SplineOmics.git).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html","id":"key-functions-and-classes","dir":"Reference","previous_headings":"","what":"Key Functions and Classes","title":"Package Name: SplineOmics — SplineOmics-package","text":"- extract_data: Extracts data matrix Excel file. - create_splineomics: Creates SplineOmics object, contains arguments used several package functions. - explore_data: Performs exploratory data analysis data, outputs HTML report containg various plots, density plots correlation heatmaps. - screen_limma_hyperparams: Allows specify lists different hyperparameters test, degree freedom 2, 3, 4, adj.p-val thresholds, 0.1 0.05, tests specified different values limma spline hyperparameters semi-combinatorial way. - update_splineomics: Allows change values SplineOmics object, example observing outliers removed data (update data parameter). - run_limma_splines: Central function script, called screen_limma_hyperparams function can called get limma spline analysis results (p-values features (e.g. proteins)) hyperparameters, selected finally. - create_limma_report: Creates HTML report showing run_limma_splines results - cluster_hits: Clusters splines hits (significant features) based shape shows results plots HTML report. - download_enrichr_databases: Allows download Enrichr databases runnin clusterProfiler run_gsea function . - run_gsea: Runs clusterProfiler clustered hits using Enrichr databases.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html","id":"package-options","dir":"Reference","previous_headings":"","what":"Package Options","title":"Package Name: SplineOmics — SplineOmics-package","text":"None","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html","id":"dependencies","dir":"Reference","previous_headings":"","what":"Dependencies","title":"Package Name: SplineOmics — SplineOmics-package","text":"- **ComplexHeatmap**: creating complex heatmaps advanced features. - **base64enc**: encoding/decoding base64. - **dendextend**: extending `dendrogram` objects R, allowing easier manipulation dendrograms. - **dplyr**: data manipulation. - **ggplot2**: creating elegant data visualizations using grammar graphics. - **ggrepel**: better label placement ggplot2. - ****: constructing paths project’s files. - **limma**: linear models microarray data. - **openxlsx**: reading, writing, editing xlsx files. - **patchwork**: combining multiple ggplot objects single plot. - **pheatmap**: creating pretty heatmaps. - **progress**: adding progress bars loops apply functions. - **purrr**: functional programming tools. - **rlang**: tools work core language features R R’s base types. - **scales**: scale functions visualization. - **tibble**: creating tidy data frames easy work . - **tidyr**: tidying data. - **zip**: combining files zip file. Optional dependencies dependencies necessary functions: - **edgeR**: preprocessing RNA-seq data run_limma_splines() fun. - **clusterProfiler**: run_gsea() function (gene set enrichment). - **rstudioapi**: open_tutorial() open_template() functions.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html","id":"authors","dir":"Reference","previous_headings":"","what":"Authors","title":"Package Name: SplineOmics — SplineOmics-package","text":"- [Thomas-Rauter](https://github.com/Thomas-Rauter) - Wrote package developed approach VSchaepertoens guidance nfortelny skafdasschaf. - [nfortelny](https://github.com/nfortelny) - Principal Investigator, provided guidance support. - [skafdasschaf](https://github.com/skafdasschaf) - Helped review code provided improvement suggestions. - [VSchaepertoens](https://github.com/VSchaepertoens) - Developed internal plotting function contributed exploratory data analysis overall approach.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html","id":"maintainer","dir":"Reference","previous_headings":"","what":"Maintainer","title":"Package Name: SplineOmics — SplineOmics-package","text":"- Name: Thomas Rauter - Email: thomas.rauter@plus.ac.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html","id":"license","dir":"Reference","previous_headings":"","what":"License","title":"Package Name: SplineOmics — SplineOmics-package","text":"- License: MIT","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html","id":"useful-urls","dir":"Reference","previous_headings":"","what":"Useful URLs","title":"Package Name: SplineOmics — SplineOmics-package","text":"- [GitHub repo package](https://github.com/csbg/SplineOmics.git)","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html","id":"additional-information","dir":"Reference","previous_headings":"","what":"Additional Information","title":"Package Name: SplineOmics — SplineOmics-package","text":"None","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/add_feature_names.html","id":null,"dir":"Reference","previous_headings":"","what":"Add Feature Names to Data — add_feature_names","title":"Add Feature Names to Data — add_feature_names","text":"function assigns feature names rows dataframe based specified column another dataframe. column specified, assigns sequential numbers feature names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/add_feature_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add Feature Names to Data — add_feature_names","text":"","code":"add_feature_names(data, clean_data, feature_name_columns)"},{"path":"https://csbg.github.io/SplineOmics/reference/add_feature_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add Feature Names to Data — add_feature_names","text":"data dataframe containing original data feature names. clean_data dataframe feature names added. feature_name_columns string specifying name feature columns `data`. `NA`, sequential numbers used feature names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/add_feature_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add Feature Names to Data — add_feature_names","text":"`clean_data` dataframe updated row names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/add_feature_names.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Add Feature Names to Data — add_feature_names","text":"function performs following operations: - Extracts feature names specified column `data`, ignoring `NA` values. - Ensures feature names unique match number rows `clean_data`. - Assigns feature names rows `clean_data`. - `feature_name_column` `NA`, assigns sequential numbers (1, 2, 3, etc.) feature names issues message.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/add_plot_to_html.html","id":null,"dir":"Reference","previous_headings":"","what":"Add Plot to HTML Content — add_plot_to_html","title":"Add Plot to HTML Content — add_plot_to_html","text":"function converts plot base64 image adds HTML content.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/add_plot_to_html.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add Plot to HTML Content — add_plot_to_html","text":"","code":"add_plot_to_html(html_content, plot_element, plots_size, section_index)"},{"path":"https://csbg.github.io/SplineOmics/reference/add_plot_to_html.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add Plot to HTML Content — add_plot_to_html","text":"html_content current HTML content character string. plot_element plot element converted base64. plots_size integer specifying height plot. section_index integer specifying section index.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/add_plot_to_html.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add Plot to HTML Content — add_plot_to_html","text":"updated HTML content character string.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/ask_user.html","id":null,"dir":"Reference","previous_headings":"","what":"Prompt the user with a yes/no question — ask_user","title":"Prompt the user with a yes/no question — ask_user","text":"function prompts user yes/question. user answers \"yes\" (case insensitive), code proceeds. user answers \"\" anything else, code stops.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/ask_user.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prompt the user with a yes/no question — ask_user","text":"","code":"ask_user(question)"},{"path":"https://csbg.github.io/SplineOmics/reference/ask_user.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prompt the user with a yes/no question — ask_user","text":"question string question ask user.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/ask_user.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prompt the user with a yes/no question — ask_user","text":"None.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/between_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Between Level Analysis — between_level","title":"Between Level Analysis — between_level","text":"Performs -level analysis using LIMMA compare specified levels within condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/between_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Between Level Analysis — between_level","text":"","code":"between_level( data, rna_seq_data, meta, design, spline_params, condition, compared_levels, padjust_method, feature_names )"},{"path":"https://csbg.github.io/SplineOmics/reference/between_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Between Level Analysis — between_level","text":"data matrix data values. rna_seq_data object containing preprocessed RNA-seq data, output `limma::voom` similar preprocessing pipeline. meta dataframe containing metadata, including 'Time' column. design design formula matrix LIMMA analysis. spline_params list spline parameters analysis. condition character string specifying condition. compared_levels vector levels within condition compare. padjust_method character string specifying p-adjustment method. feature_names non-empty character vector feature names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/between_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Between Level Analysis — between_level","text":"list containing top tables factor factor-time contrast.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/bind_data_with_annotation.html","id":null,"dir":"Reference","previous_headings":"","what":"Bind Data with Annotation — bind_data_with_annotation","title":"Bind Data with Annotation — bind_data_with_annotation","text":"function converts matrix dataframe, adds row names first column, binds annotation data.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/bind_data_with_annotation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Bind Data with Annotation — bind_data_with_annotation","text":"","code":"bind_data_with_annotation(data, annotation)"},{"path":"https://csbg.github.io/SplineOmics/reference/bind_data_with_annotation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Bind Data with Annotation — bind_data_with_annotation","text":"data matrix containing numeric data. annotation dataframe containing annotation information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/bind_data_with_annotation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Bind Data with Annotation — bind_data_with_annotation","text":"dataframe `data` `annotation` combined, row names `data` first column named `feature_names`.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_cluster_hits_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build Cluster Hits Report — build_cluster_hits_report","title":"Build Cluster Hits Report — build_cluster_hits_report","text":"Generates HTML report clustered hits, including plots spline parameter details, table contents.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_cluster_hits_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build Cluster Hits Report — build_cluster_hits_report","text":"","code":"build_cluster_hits_report( header_section, plots, plots_sizes, level_headers_info, spline_params, adj_pthresholds, mode, report_info, output_file_path )"},{"path":"https://csbg.github.io/SplineOmics/reference/build_cluster_hits_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build Cluster Hits Report — build_cluster_hits_report","text":"header_section character string containing HTML header section. plots list ggplot2 plot objects. plots_sizes list integers specifying size plot. level_headers_info list header information level. spline_params list spline parameters. adj_pthresholds Float vector values level adj.p.tresh mode character string specifying mode ('isolated' 'integrated'). report_info named list containg report info fields. used email hotkey functionality. output_file_path character string specifying path save HTML report.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_cluster_hits_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build Cluster Hits Report — build_cluster_hits_report","text":"return value, called side effects.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/build_create_gsea_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build GSEA Report — build_create_gsea_report","title":"Build GSEA Report — build_create_gsea_report","text":"Generates HTML report Gene Set Enrichment Analysis (GSEA) based provided plot data, header information, content. report includes sections level clustered hits, along table contents various plots.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_create_gsea_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build GSEA Report — build_create_gsea_report","text":"","code":"build_create_gsea_report( header_section, plots, plots_sizes, level_headers_info, report_info, output_file_path )"},{"path":"https://csbg.github.io/SplineOmics/reference/build_create_gsea_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build GSEA Report — build_create_gsea_report","text":"header_section string containing HTML content header section report. plots list plots included report. plots_sizes list sizes plots. level_headers_info list containing header information level clustered hits. report_info named list containg report info fields. used email hotkey functionality. output_file_path string specifying file path report saved.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_create_gsea_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build GSEA Report — build_create_gsea_report","text":"None. function generates writes HTML report specified output file path.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_create_gsea_report.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Build GSEA Report — build_create_gsea_report","text":"function first initializes HTML content provided header section placeholder table contents (TOC). iterates plots, generating sections level clustered hits processing individual plots. TOC inserted HTML content, finalized written specified output file.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_create_limma_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build Cluster Hits Report — build_create_limma_report","title":"Build Cluster Hits Report — build_create_limma_report","text":"Generates HTML report clustered hits, including plots spline parameter details, table contents.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_create_limma_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build Cluster Hits Report — build_create_limma_report","text":"","code":"build_create_limma_report( header_section, plots, plots_sizes, level_headers_info, report_info, output_file_path = here::here() )"},{"path":"https://csbg.github.io/SplineOmics/reference/build_create_limma_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build Cluster Hits Report — build_create_limma_report","text":"header_section character string containing HTML header section. plots list ggplot2 plot objects. plots_sizes list integers specifying size plot. level_headers_info list header information level. report_info named list containg report info fields. used email hotkey functionality. output_file_path character string specifying path save HTML report.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_create_limma_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build Cluster Hits Report — build_create_limma_report","text":"return value, called side effects.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/build_explore_data_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build Explore Data Report — build_explore_data_report","title":"Build Explore Data Report — build_explore_data_report","text":"function generates HTML report containing header section, table contents, series plots. plot included report specified sizes.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_explore_data_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build Explore Data Report — build_explore_data_report","text":"","code":"build_explore_data_report( header_section, plots, plots_sizes, report_info, output_file_path )"},{"path":"https://csbg.github.io/SplineOmics/reference/build_explore_data_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build Explore Data Report — build_explore_data_report","text":"header_section string containing HTML content header section report. plots list ggplot objects representing plots included report. plots_sizes list sizes corresponding plot, defining dimensions used rendering plots. report_info named list containg report info fields. used email hotkey functionality. output_file_path string specifying file path HTML report saved.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_explore_data_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build Explore Data Report — build_explore_data_report","text":"None. function writes HTML content specified file.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_hyperparams_screen_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","title":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","text":"Constructs HTML report hyperparameter screening embedding plots respective sizes provided header section.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_hyperparams_screen_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","text":"","code":"build_hyperparams_screen_report( header_section, plots, plots_sizes, report_info, output_file_path )"},{"path":"https://csbg.github.io/SplineOmics/reference/build_hyperparams_screen_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","text":"header_section character string containing HTML header section. plots list ggplot2 plot objects. plots_sizes list integers specifying number rows plot. report_info named list containg report info fields. used email hotkey functionality. output_file_path character string specifying path save HTML report.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/build_hyperparams_screen_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Build Hyperparameters Screening Report — build_hyperparams_screen_report","text":"return value, called side effects.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/check_between_level_pattern.html","id":null,"dir":"Reference","previous_headings":"","what":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"function checks elements within list top tables contain element names match specified -level pattern.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_between_level_pattern.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"","code":"check_between_level_pattern(top_tables)"},{"path":"https://csbg.github.io/SplineOmics/reference/check_between_level_pattern.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"top_tables list element list containing named elements.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_between_level_pattern.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"list two elements: between_levels logical value indicating whether element names match -level pattern. index_with_pattern index first element `top_tables` names match -level pattern, NA match found.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_between_level_pattern.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Check for Between-Level Patterns in Top Tables — check_between_level_pattern","text":"function iterates element `top_tables`. element list, checks names within inner list match pattern `\".+_vs_.+\"`. match found, function sets `between_levels` TRUE records index matching element. search stops first match.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_clustered_hits.html","id":null,"dir":"Reference","previous_headings":"","what":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","title":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","text":"function checks given dataframe `clustered_genes` contains required columns `gene` `cluster`. `gene` column must contain character strings length 1, `cluster` column must contain integers. condition met, function stops script produces informative error message.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_clustered_hits.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","text":"","code":"check_clustered_hits(levels_clustered_hits)"},{"path":"https://csbg.github.io/SplineOmics/reference/check_clustered_hits.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","text":"levels_clustered_hits list dataframes checked required format.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_clustered_hits.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check Clustered Genes Dataframe for Required Conditions — check_clustered_hits","text":"function return value. stops error message conditions met.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_databases.html","id":null,"dir":"Reference","previous_headings":"","what":"Check Valid Databases Dataframe — check_databases","title":"Check Valid Databases Dataframe — check_databases","text":"function checks dataframe exactly three columns named DB, Geneset, Gene, columns must type character.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_databases.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check Valid Databases Dataframe — check_databases","text":"","code":"check_databases(databases)"},{"path":"https://csbg.github.io/SplineOmics/reference/check_databases.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check Valid Databases Dataframe — check_databases","text":"databases dataframe check.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_databases.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check Valid Databases Dataframe — check_databases","text":"None. function stops execution provides error message dataframe valid.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_genes.html","id":null,"dir":"Reference","previous_headings":"","what":"Check Valid Gene IDs — check_genes","title":"Check Valid Gene IDs — check_genes","text":"function checks whether character vector `genes` contains valid gene IDs. gene ID must consist solely alphabetic letters numbers.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_genes.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check Valid Gene IDs — check_genes","text":"","code":"check_genes(genes, max_index_overall = NA)"},{"path":"https://csbg.github.io/SplineOmics/reference/check_genes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check Valid Gene IDs — check_genes","text":"genes character vector containing gene IDs. max_index_overall integer, specifying highest index features across levels.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_genes.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check Valid Gene IDs — check_genes","text":"None. function stops execution provides error message vector meet criteria, including first offending element index.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_null_elements.html","id":null,"dir":"Reference","previous_headings":"","what":"Check for NULL Elements in Arguments — check_null_elements","title":"Check for NULL Elements in Arguments — check_null_elements","text":"function checks elements provided list arguments `NULL`. `NULL` elements found, stops execution returns informative error message.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_null_elements.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check for NULL Elements in Arguments — check_null_elements","text":"","code":"check_null_elements(args)"},{"path":"https://csbg.github.io/SplineOmics/reference/check_null_elements.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check for NULL Elements in Arguments — check_null_elements","text":"args list arguments check `NULL` elements.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_null_elements.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check for NULL Elements in Arguments — check_null_elements","text":"function return value. stops execution `NULL` elements found input list.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_params.html","id":null,"dir":"Reference","previous_headings":"","what":"Check Params List for Required Conditions — check_params","title":"Check Params List for Required Conditions — check_params","text":"function checks given list `params` contains allowed named elements. elements present, , must named exactly specified must contain correct data types: float, character, int, int, float. condition met, function stops script produces informative error message. `params` can also `NA`.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_params.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check Params List for Required Conditions — check_params","text":"","code":"check_params(params)"},{"path":"https://csbg.github.io/SplineOmics/reference/check_params.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check Params List for Required Conditions — check_params","text":"params list checked required conditions, `NA`.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_params.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check Params List for Required Conditions — check_params","text":"function return value. stops error message conditions met.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_splineomics_elements.html","id":null,"dir":"Reference","previous_headings":"","what":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","title":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","text":"function checks given object contains required named elements specified function type. element missing, stops script provides informative error message.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_splineomics_elements.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","text":"","code":"check_splineomics_elements(splineomics, func_type)"},{"path":"https://csbg.github.io/SplineOmics/reference/check_splineomics_elements.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","text":"splineomics object checked. func_type string specifying function type. can one \"cluster_hits\", \"create_limma_report\", \"run_limma_splines\", \"explore_data\"","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/check_splineomics_elements.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check for Required Elements in the SplineOmics Object — check_splineomics_elements","text":"None. Stops execution required element missing.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/clean_gene_symbols.html","id":null,"dir":"Reference","previous_headings":"","what":"Clean the Gene Symbols — clean_gene_symbols","title":"Clean the Gene Symbols — clean_gene_symbols","text":"function preprocesses vector gene names cleaning formatting . removes non-alphanumeric characters first block alphanumeric characters converts remaining characters uppercase.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/clean_gene_symbols.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Clean the Gene Symbols — clean_gene_symbols","text":"","code":"clean_gene_symbols(genes)"},{"path":"https://csbg.github.io/SplineOmics/reference/clean_gene_symbols.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Clean the Gene Symbols — clean_gene_symbols","text":"genes character vector containing gene names cleaned.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/clean_gene_symbols.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Clean the Gene Symbols — clean_gene_symbols","text":"character vector cleaned gene symbols (names) length input. cleaned names uppercase, invalid empty gene names replaced NA.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/cluster_hits.html","id":null,"dir":"Reference","previous_headings":"","what":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","title":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","text":"Performs clustering hits top tables generated differential expression analysis. function filters hits based adjusted p-value thresholds, extracts spline coefficients significant features, normalizes coefficients, applies hierarchical clustering. results, including clustering assignments normalized spline curves, saved specified directory compiled HTML report.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/cluster_hits.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","text":"","code":"cluster_hits( splineomics, genes, adj_pthresholds = c(0.05), clusters = c(\"auto\"), plot_info = list(y_axis_label = \"Value\", time_unit = \"min\", treatment_labels = NA, treatment_timepoints = NA), report_dir = here::here(), analysis_type = \"time_effect\", report = TRUE )"},{"path":"https://csbg.github.io/SplineOmics/reference/cluster_hits.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","text":"splineomics S3 object class `SplineOmics` contains necessary data parameters analysis, including: data: original expression dataset used differential expression analysis. meta: dataframe containing metadata corresponding data, must include 'Time' column columns specified conditions. design: character length 1 representing limma design formula. condition: Character length 1 specifying column name meta used define groups analysis. spline_params: list spline parameters analysis. meta_batch_column: character string specifying column name metadata used batch effect removal. meta_batch2_column: character string specifying second column name metadata used batch effect removal. limma_splines_result: list data frames, representing top table differential expression analysis, containing least 'adj.P.Val' expression data columns. genes character vector containing gene names features analyzed. adj_pthresholds Numeric vector p-value thresholds filtering hits top table. clusters Character integer vector specifying number clusters 'auto' automatic estimation. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.). report_dir Character string specifying directory path HTML report output files saved. analysis_type String specifying type limma results (three categories: time_effect, avrg_diff_conditions, interaction_condition_time ( see limma_result_categories.pdf inst/descriptions). report Boolean TRUE FALSE value specifing report generated.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/cluster_hits.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"cluster_hits.R contains the exported package function cluster_hits and all the functions that make up the functionality of cluster_hits. cluster_hits clusters the hits of a time series omics datasets (the features that were significantly changed over the time course) with hierarchical clustering of the spline shape. Cluster Hits from Top Tables — cluster_hits","text":"list element corresponds group factor contains clustering results, including `clustered_hits` data frame, hierarchical clustering object `hc`, `curve_values` data frame normalized spline curves, `top_table` cluster assignments.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/control_inputs_create_gsea_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Control Inputs for GSEA Report — control_inputs_create_gsea_report","title":"Control Inputs for GSEA Report — control_inputs_create_gsea_report","text":"Validates inputs generating GSEA report, including clustered hits, genes, databases, parameters, plot titles, background genes.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/control_inputs_create_gsea_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Control Inputs for GSEA Report — control_inputs_create_gsea_report","text":"","code":"control_inputs_create_gsea_report( levels_clustered_hits, databases, params, plot_titles, background )"},{"path":"https://csbg.github.io/SplineOmics/reference/control_inputs_create_gsea_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Control Inputs for GSEA Report — control_inputs_create_gsea_report","text":"levels_clustered_hits list containing clustered hits various levels. databases list databases used GSEA analysis. params list parameters GSEA analysis. plot_titles character vector titles plots, length matching `levels_clustered_hits`. background character vector background genes NULL.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/control_inputs_extract_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Control Inputs for Extracting Data — control_inputs_extract_data","title":"Control Inputs for Extracting Data — control_inputs_extract_data","text":"function checks validity input data feature name column. ensures input data dataframe, feature name column specified correctly, contains valid data.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/control_inputs_extract_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Control Inputs for Extracting Data — control_inputs_extract_data","text":"","code":"control_inputs_extract_data(data, feature_name_columns)"},{"path":"https://csbg.github.io/SplineOmics/reference/control_inputs_extract_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Control Inputs for Extracting Data — control_inputs_extract_data","text":"data dataframe containing input data. feature_name_columns character vector specifying names feature name columns. columns must present dataframe data. `NA`, column checked.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/control_inputs_extract_data.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Control Inputs for Extracting Data — control_inputs_extract_data","text":"function performs following checks: - Ensures input data dataframe. - Checks feature name column single string exists data. - Ensures specified feature name column contain `NA` values. - Checks input dataframe empty. checks fail, function stops error message.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_enrichr_zip.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"function creates ZIP file containing directories level gene lists. directory contains text files cluster. ZIP file encoded base64 easy download.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_enrichr_zip.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"","code":"create_enrichr_zip(enrichr_format)"},{"path":"https://csbg.github.io/SplineOmics/reference/create_enrichr_zip.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"enrichr_format list formatted gene lists background gene list, typically output `prepare_gene_lists_for_enrichr`.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_enrichr_zip.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"base64-encoded string representing ZIP file.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_enrichr_zip.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Create a ZIP File for Enrichr Gene Lists — create_enrichr_zip","text":"function creates temporary directory store files. level `enrichr_format$gene_lists`, creates directory named level. Within level directory, creates text file cluster, containing genes cluster. directories files added ZIP file, encoded base64.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_gsea_report_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","title":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","text":"function conducts Gene Set Enrichment Analysis (GSEA) using either clusterProfiler package. Afterwards, plots results. allows customization enrichment parameters, selection databases, optionally specifying custom plot title background gene list.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_gsea_report_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","text":"","code":"create_gsea_report_level( clustered_genes, databases, params = NA, plot_title = \"\", background = NULL )"},{"path":"https://csbg.github.io/SplineOmics/reference/create_gsea_report_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","text":"clustered_genes list dataframes two columns: first column contains standard gene symbol, second column contains integer specifying cluster. databases dataframe containing data downloaded Enrichr databases params list specifying clusterProfiler parameters enrichment analysis. plot_title optional string specifying title plot. provided, default title based analysis used. background optional list standard gene symbols used background enrichment analysis instead background chosen `enricher`. default empty list, implies use default background set enrichment tool.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_gsea_report_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform Gene Set Enrichment Analysis and plot it. — create_gsea_report_level","text":"object containing results Gene Set Enrichment Analysis, including plots generated analysis.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_limma_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a limma report — create_limma_report","title":"Create a limma report — create_limma_report","text":"Generates HTML report based results limma analysis splines. report includes various plots sections summarizing analysis results time effects, average differences conditions, interaction effects condition time.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_limma_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a limma report — create_limma_report","text":"","code":"create_limma_report(splineomics, adj_pthresh = 0.05, report_dir = here::here())"},{"path":"https://csbg.github.io/SplineOmics/reference/create_limma_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a limma report — create_limma_report","text":"splineomics S3 object class `SplineOmics` contains necessary data parameters analysis, including: limma_splines_result: list containing top tables differential expression analysis three different limma results. meta: data frame sample metadata. Must contain column \"Time\". condition: character string specifying column name metadata (meta) defines groups analysis. column contains levels \"exponential\" \"stationary\" phases, \"drug\" \"no_drug\" treatments. annotation: data frame containing feature information, gene protein names, associated expression data. report_info: list containing metadata analysis reporting purposes. adj_pthresh numeric value specifying adjusted p-value threshold significance. Default 0.05. Must > 0 < 1. report_dir string specifying directory report saved. Default current working directory.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_limma_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a limma report — create_limma_report","text":"list plots included generated HTML report.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_p_value_histogram.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a p-value histogram from a limma top_table — create_p_value_histogram","title":"Create a p-value histogram from a limma top_table — create_p_value_histogram","text":"function generates histogram unadjusted p-values limma top_table.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_p_value_histogram.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a p-value histogram from a limma top_table — create_p_value_histogram","text":"","code":"create_p_value_histogram( top_table, pthresh = 0.05, title = \"P-Value Histogram\" )"},{"path":"https://csbg.github.io/SplineOmics/reference/create_p_value_histogram.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a p-value histogram from a limma top_table — create_p_value_histogram","text":"top_table data frame containing limma top_table column named `P.Value` unadjusted p-values. pthresh numeric value adjusted p-value threshold (used function, included consistency). title character string title histogram.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_p_value_histogram.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a p-value histogram from a limma top_table — create_p_value_histogram","text":"ggplot2 object representing histogram unadjusted p-values.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_progress_bar.html","id":null,"dir":"Reference","previous_headings":"","what":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","text":"Creates progress bar tracking progress iterable task.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_progress_bar.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","text":"","code":"create_progress_bar(iterable, message = \"Processing\")"},{"path":"https://csbg.github.io/SplineOmics/reference/create_progress_bar.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","text":"iterable iterable object (e.g., list vector) whose length determines total number steps. message message display progress bar (default \"Processing\").","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_progress_bar.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. Create Progress Bar — create_progress_bar","text":"progress bar object 'progress' package.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/create_spline_params.html","id":null,"dir":"Reference","previous_headings":"","what":"Create Spline Parameters — create_spline_params","title":"Create Spline Parameters — create_spline_params","text":"Generates spline parameters based configuration, metadata, condition, mode.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_spline_params.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create Spline Parameters — create_spline_params","text":"","code":"create_spline_params(spline_test_configs, index, meta, condition, mode)"},{"path":"https://csbg.github.io/SplineOmics/reference/create_spline_params.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create Spline Parameters — create_spline_params","text":"spline_test_configs configuration object spline tests. index Index spline configuration process. meta dataframe containing metadata. condition character string specifying condition. mode character string specifying mode.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_spline_params.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create Spline Parameters — create_spline_params","text":"list processed spline parameters.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/create_splineomics.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a SplineOmics object — create_splineomics","title":"Create a SplineOmics object — create_splineomics","text":"Creates SplineOmics object containing variables commonly used across multiple functions package.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_splineomics.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a SplineOmics object — create_splineomics","text":"","code":"create_splineomics( data, meta, condition, rna_seq_data = NULL, annotation = NULL, report_info = NULL, meta_batch_column = NULL, meta_batch2_column = NULL, feature_name_columns = NULL, design = NULL, spline_params = NULL, padjust_method = \"BH\" )"},{"path":"https://csbg.github.io/SplineOmics/reference/create_splineomics.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a SplineOmics object — create_splineomics","text":"data actual omics data. case rna_seq_data argument used, still provide argument. case, input data matrix (example $E part voom object). Assign feature names row headers (otherwise, just numbers feature names). meta Metadata associated omics data. condition condition variable. rna_seq_data object containing preprocessed RNA-seq data, output `limma::voom` similar preprocessing pipeline. argument controlled function `SplineOmics` package. Rather, regard relies input control `limma::lmfit` function. annotation dataframe feature descriptions data (optional). report_info list containing report information omics data type, data description, data collection date, analyst name, contact info, project name (optional). meta_batch_column Column meta batch information (optional). meta_batch2_column Column secondary meta batch information (optional). feature_name_columns Character vector containing column names annotation info describe features. argument used specify HTML report exactly feature names displayed individual spline plot created. Use vector used create row headers data matrix! design design matrix similar object (optional). spline_params Parameters spline functions (optional). Must contain named elements spline_type, must contain either string \"n\" natural cubic splines, \"b\", B-splines, named element degree case B-splines, must contain integer, named element dof, specifying degree freedom, containing integer required natural B-splines. padjust_method Method p-value adjustment, one \"none\", \"BH\", \"\", \"holm\", \"bonferroni\", \"hochberg\", \"hommel\". Defaults \"BH\" (Benjamini-Hochberg).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_splineomics.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a SplineOmics object — create_splineomics","text":"SplineOmics object.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_toc.html","id":null,"dir":"Reference","previous_headings":"","what":"Create Table of Contents — create_toc","title":"Create Table of Contents — create_toc","text":"Creates HTML content Table Contents.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_toc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create Table of Contents — create_toc","text":"","code":"create_toc()"},{"path":"https://csbg.github.io/SplineOmics/reference/create_toc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create Table of Contents — create_toc","text":"string containing HTML Table Contents.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_volcano_plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a Volcano Plot — create_volcano_plot","title":"Create a Volcano Plot — create_volcano_plot","text":"function creates volcano plot limma top table, plotting log fold changes negative log10 adjusted p-values.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_volcano_plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a Volcano Plot — create_volcano_plot","text":"","code":"create_volcano_plot(top_table, adj_pthresh, compared_levels)"},{"path":"https://csbg.github.io/SplineOmics/reference/create_volcano_plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a Volcano Plot — create_volcano_plot","text":"top_table data frame limma containing 'logFC' 'adj.P.Val' columns. adj_pthresh numeric value adjusted p-value threshold. compared_levels character vector length 2 specifying compared levels.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/create_volcano_plot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a Volcano Plot — create_volcano_plot","text":"ggplot object representing volcano plot.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/dbs_to_term2genes.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert Database File to TERM2GENE List — dbs_to_term2genes","title":"Convert Database File to TERM2GENE List — dbs_to_term2genes","text":"Reads specified .tsv file containing information databases, gene sets, genes. file three columns: 'DB' database names, Geneset' gene set identifiers, 'Gene' gene names. function organizes information nested list. top-level element corresponds unique database, within , gene sets map lists associated genes.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/dbs_to_term2genes.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert Database File to TERM2GENE List — dbs_to_term2genes","text":"","code":"dbs_to_term2genes(databases)"},{"path":"https://csbg.github.io/SplineOmics/reference/dbs_to_term2genes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert Database File to TERM2GENE List — dbs_to_term2genes","text":"databases dataframe, containing three columns DB, Geneset, gene. dataframe contains databases downloaded Enrichr SplineOmics package function: download_enrichr_databases.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/dbs_to_term2genes.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert Database File to TERM2GENE List — dbs_to_term2genes","text":"nested list first level names corresponds database names ('DB'), second level gene sets ('Geneset'), innermost lists contain gene names ('Gene') associated gene set.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/define_html_styles.html","id":null,"dir":"Reference","previous_headings":"","what":"Define HTML Styles — define_html_styles","title":"Define HTML Styles — define_html_styles","text":"Defines CSS styles section headers Table Contents (TOC) entries used GSEA report generation.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/define_html_styles.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Define HTML Styles — define_html_styles","text":"","code":"define_html_styles()"},{"path":"https://csbg.github.io/SplineOmics/reference/define_html_styles.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Define HTML Styles — define_html_styles","text":"list containing styles section headers TOC entries.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/design2design_matrix.html","id":null,"dir":"Reference","previous_headings":"","what":"Create Design Matrix for Splines — design2design_matrix","title":"Create Design Matrix for Splines — design2design_matrix","text":"function generates design matrix using spline parameters metadata. accommodates B-splines natural cubic splines based provided spline type parameters.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/design2design_matrix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create Design Matrix for Splines — design2design_matrix","text":"","code":"design2design_matrix(meta, spline_params, level_index, design)"},{"path":"https://csbg.github.io/SplineOmics/reference/design2design_matrix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create Design Matrix for Splines — design2design_matrix","text":"meta dataframe containing metadata, including time column. spline_params list containing spline parameters. list can include `dof` (degrees freedom), `knots`, `bknots` (boundary knots), `spline_type`, `degree`. level_index integer representing current level index design matrix generated. design character string representing design formula used generating model matrix.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/design2design_matrix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create Design Matrix for Splines — design2design_matrix","text":"design matrix constructed using specified spline parameters design formula.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/determine_analysis_mode.html","id":null,"dir":"Reference","previous_headings":"","what":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","title":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","text":"function determines whether level analyzed isolation together based design formula. design formula includes interaction terms involving factor experiment, analysis mode considered integrated (together). Otherwise, considered isolated.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/determine_analysis_mode.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","text":"","code":"determine_analysis_mode(design, factor_column)"},{"path":"https://csbg.github.io/SplineOmics/reference/determine_analysis_mode.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","text":"design character string representing design formula used generating model matrix. factor_column character string representing column name factor experiment metadata.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/determine_analysis_mode.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Determine Analysis Mode Based on Design Formula — determine_analysis_mode","text":"character string indicating analysis mode, either \"integrated\" design formula involves interaction terms factor experiment, \"isolated\" otherwise.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/download_enrichr_databases.html","id":null,"dir":"Reference","previous_headings":"","what":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","title":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","text":"function downloads gene sets specified Enrichr databases saves specified output directory .tsv file. file named timestamp ensure uniqueness.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/download_enrichr_databases.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","text":"","code":"download_enrichr_databases(gene_set_lib, output_dir = here::here())"},{"path":"https://csbg.github.io/SplineOmics/reference/download_enrichr_databases.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","text":"gene_set_lib character vector database names download Enrichr. output_dir character string specifying output directory .tsv file saved. Defaults current working directory.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/download_enrichr_databases.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"The exported function download_enrichr_databases allows to selects & download Enrichr databases for local use with clusterProfiler. Download Enrichr Databases — download_enrichr_databases","text":"function return value saves .tsv file specified directory containing gene sets specified Enrichr databases.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/encode_df_to_base64.html","id":null,"dir":"Reference","previous_headings":"","what":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","title":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","text":"function takes dataframe input returns base64 encoded CSV object. encoded object can embedded HTML document directly, button download file without pointing local file.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/encode_df_to_base64.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","text":"","code":"encode_df_to_base64(df, report_type = NA)"},{"path":"https://csbg.github.io/SplineOmics/reference/encode_df_to_base64.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","text":"df dataframe encoded. report_type (Optional) string specifying report generation function called. Generates different Excel sheet names based report_type.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/encode_df_to_base64.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Encode DataFrame to Base64 for HTML Embedding — encode_df_to_base64","text":"character string containing base64 encoded CSV data.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/enrichr_get_genesets.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Enrichr Gene Sets — enrichr_get_genesets","title":"Get Enrichr Gene Sets — enrichr_get_genesets","text":"function downloads gene sets specified Enrichr databases. returns list element list corresponding database, element containing vector human gene symbols gene set.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/enrichr_get_genesets.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Enrichr Gene Sets — enrichr_get_genesets","text":"","code":"enrichr_get_genesets(databases)"},{"path":"https://csbg.github.io/SplineOmics/reference/enrichr_get_genesets.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Enrichr Gene Sets — enrichr_get_genesets","text":"databases character vector database names download Enrichr.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/enrichr_get_genesets.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Enrichr Gene Sets — enrichr_get_genesets","text":"named list gene sets specified Enrichr databases. database represented list, gene set names list names vectors human gene symbols list elements.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/ensure_clusterProfiler.html","id":null,"dir":"Reference","previous_headings":"","what":"Ensure 'clusterProfiler' is installed and loaded — ensure_clusterProfiler","title":"Ensure 'clusterProfiler' is installed and loaded — ensure_clusterProfiler","text":"function checks 'clusterProfiler' package installed. , prompts user choose whether install automatically, install manually, cancel operation. installed, package loaded use.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/ensure_clusterProfiler.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Ensure 'clusterProfiler' is installed and loaded — ensure_clusterProfiler","text":"","code":"ensure_clusterProfiler()"},{"path":"https://csbg.github.io/SplineOmics/reference/explore_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Exploratory Plots — explore_data","title":"Generate Exploratory Plots — explore_data","text":"function takes data matrix, checks validity, generates list exploratory plots including density plots, boxplots, PCA plots, MDS plots, variance explained plots, violin plots.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/explore_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Exploratory Plots — explore_data","text":"","code":"explore_data(splineomics, report_dir = here::here(), report = TRUE)"},{"path":"https://csbg.github.io/SplineOmics/reference/explore_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Exploratory Plots — explore_data","text":"splineomics SplineOmics object, containing data, meta, condition, report_info, meta_batch_column, meta_batch2_column; report_dir non-empty string specifying report directory. report Boolean TRUE FALSE value, specifying report generated . report generated per default, plots plot objects inside R desired, argument can set FALSE.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/explore_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Exploratory Plots — explore_data","text":"list ggplot objects representing various exploratory plots.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/extract_data.html","id":null,"dir":"Reference","previous_headings":"","what":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","title":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","text":"function takes dataframe identifies rectangular quadratic area containing numeric data, starting first occurrence 6x6 block numeric values. extracts area matrix, ensuring row contains numeric values. Rows NA values removed resulting matrix.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/extract_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","text":"","code":"extract_data(data, feature_name_columns = NA, user_prompt = TRUE)"},{"path":"https://csbg.github.io/SplineOmics/reference/extract_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","text":"data dataframe loaded tabular file, potentially containing rectangular quadratic area numeric data amidst values. feature_name_columns (Optional) character vector, specifying columns dataframe data, used construct feature names. ommited, feature names just numbers (stored characters) starting 1 (1, 2, 3, etc.) user_prompt Boolean specifying whether user prompt correct format input data shown.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/extract_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"extract_data.R contains the exported package function extract_data. This function automatically recognises the data field in a table and returns the data matrix, that serves as input for the other functions of this package. This is for convenience only. Extract Numeric Matrix from Dataframe — extract_data","text":"numeric matrix row headers appropriate column names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/flatten_spline_configs.html","id":null,"dir":"Reference","previous_headings":"","what":"Flatten Spline Configurations — flatten_spline_configs","title":"Flatten Spline Configurations — flatten_spline_configs","text":"Flattens formats spline configurations list formatted strings.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/flatten_spline_configs.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Flatten Spline Configurations — flatten_spline_configs","text":"","code":"flatten_spline_configs(spline_configs)"},{"path":"https://csbg.github.io/SplineOmics/reference/flatten_spline_configs.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Flatten Spline Configurations — flatten_spline_configs","text":"spline_configs list spline configuration objects.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/flatten_spline_configs.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Flatten Spline Configurations — flatten_spline_configs","text":"list formatted strings representing spline configuration.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/format_text.html","id":null,"dir":"Reference","previous_headings":"","what":"Format text — format_text","title":"Format text — format_text","text":"function takes character vector `text` splits individual characters. iterates characters builds lines exceeding specified character limit (default 70). Newlines inserted lines using `
` tag, suitable HTML display.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/format_text.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Format text — format_text","text":"","code":"format_text(text)"},{"path":"https://csbg.github.io/SplineOmics/reference/format_text.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Format text — format_text","text":"text character vector formatted.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/format_text.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Format text — format_text","text":"character vector formatted text containing line breaks.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/gen_composite_spline_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Composite Spline Plots — gen_composite_spline_plots","title":"Generate Composite Spline Plots — gen_composite_spline_plots","text":"Creates composite spline plots significant non-significant features across multiple levels within condition. One half one condition comparison HTML (composite spline plots one 'condition' inside one condition comparison)","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/gen_composite_spline_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Composite Spline Plots — gen_composite_spline_plots","text":"","code":"gen_composite_spline_plots( internal_combos, datas, metas, spline_test_configs, time_unit_label )"},{"path":"https://csbg.github.io/SplineOmics/reference/gen_composite_spline_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Composite Spline Plots — gen_composite_spline_plots","text":"internal_combos list containing combinations top tables. datas list matrices. metas list metadata corresponding data matrices. spline_test_configs configuration object spline tests. time_unit_label character string specifying time unit label plots.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/gen_composite_spline_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Composite Spline Plots — gen_composite_spline_plots","text":"list containing composite spline plots lengths.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/gen_hitcomp_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Hit Comparison Plots — gen_hitcomp_plots","title":"Generate Hit Comparison Plots — gen_hitcomp_plots","text":"Generates Venn heatmap barplot given combination pair top tables.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/gen_hitcomp_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Hit Comparison Plots — gen_hitcomp_plots","text":"","code":"gen_hitcomp_plots(combo_pair)"},{"path":"https://csbg.github.io/SplineOmics/reference/gen_hitcomp_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Hit Comparison Plots — gen_hitcomp_plots","text":"combo_pair list containing two combinations top tables.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/gen_hitcomp_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Hit Comparison Plots — gen_hitcomp_plots","text":"list containing Venn heatmap plot, number hits divided 16, barplot, length indicator barplot.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/generate_and_write_html.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate and Write HTML Report — generate_and_write_html","title":"Generate and Write HTML Report — generate_and_write_html","text":"function generates HTML report inserting table contents, embedding necessary JavaScript files, writing final HTML content specified output file.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_and_write_html.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate and Write HTML Report — generate_and_write_html","text":"","code":"generate_and_write_html(toc, html_content, report_info, output_file_path)"},{"path":"https://csbg.github.io/SplineOmics/reference/generate_and_write_html.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate and Write HTML Report — generate_and_write_html","text":"toc string containing table contents HTML format. html_content string containing main HTML content placeholder table contents. report_info list containing report information `contact_info` `analyst_name`. output_file_path string specifying path final HTML file written.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_avrg_diff_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","title":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","text":"Creates p-value histograms volcano plots condition average difference conditions. function used internally `create_limma_report` function.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_avrg_diff_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","text":"","code":"generate_avrg_diff_plots(avrg_diff_conditions, adj_pthresh)"},{"path":"https://csbg.github.io/SplineOmics/reference/generate_avrg_diff_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","text":"avrg_diff_conditions list top tables LIMMA analysis representing average difference conditions. adj_pthresh numeric value specifying adjusted p-value threshold significance.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_avrg_diff_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Plots for Average Difference Conditions — generate_avrg_diff_plots","text":"list containing plots sizes, well section header information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_explore_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate exploratory plots — generate_explore_plots","title":"Generate exploratory plots — generate_explore_plots","text":"function generates various exploratory plots including density plots, box plots, violin plots, PCA plots, correlation heatmaps based provided data metadata.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_explore_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate exploratory plots — generate_explore_plots","text":"","code":"generate_explore_plots(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/generate_explore_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate exploratory plots — generate_explore_plots","text":"data data frame matrix containing data plotted. meta data frame containing metadata associated data. condition string specifying column metadata contains condition grouping variable.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_explore_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate exploratory plots — generate_explore_plots","text":"list containing two elements: plots list ggplot objects representing generated plots. plots_sizes vector numeric values indicating sizes corresponding plots.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_interaction_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","title":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","text":"Creates p-value histograms interaction condition interaction condition time. function used internally `create_limma_report` function.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_interaction_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","text":"","code":"generate_interaction_plots(interaction_condition_time, adj_pthresh)"},{"path":"https://csbg.github.io/SplineOmics/reference/generate_interaction_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","text":"interaction_condition_time list top tables LIMMA analysis representing interaction effects condition time. adj_pthresh numeric value specifying adjusted p-value threshold significance.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_interaction_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Plots for Interaction of Condition and Time — generate_interaction_plots","text":"list containing plots sizes, well section header information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_report_html.html","id":null,"dir":"Reference","previous_headings":"","what":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","text":"Generates HTML report provided plots, spline parameters, report information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_report_html.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","text":"","code":"generate_report_html( plots, plots_sizes, report_info, data = NULL, meta = NA, topTables = NA, enrichr_format = NA, level_headers_info = NA, spline_params = NA, adj_pthresholds = NA, report_type = \"explore_data\", feature_name_columns = NA, analysis_type = NA, mode = NA, filename = \"report\", timestamp = format(Sys.time(), \"%d_%m_%Y-%H_%M_%S\"), report_dir = here::here() )"},{"path":"https://csbg.github.io/SplineOmics/reference/generate_report_html.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","text":"plots list ggplot2 plot objects. plots_sizes list integers specifying size plot. report_info named list containing report information. data dataframe list dataframes, containing data directly embedded HTML report downloading. meta dataframe, containing metadata directly embedded HTML report downloading. topTables List limma topTables enrichr_format List, containing two lists: gene list list background genes. level_headers_info list header information level. spline_params list spline parameters, dof type. adj_pthresholds Numeric vector values adj.p.tresholds level. report_type character string specifying report type ('screen_limma_hyperparams' 'cluster_hits'). feature_name_columns Character vector column names annotation information, columns containing gene names. column names used put info HTML reports descriptions individual spline plots created. descriptions can made several column values, specific columns stated HTML report top (e.g gene_uniprotID). analysis_type One strings \"time_effect\", \"avrg_diff_conditions\" , \"interaction_condition_time\". represent three different outputs limma analysis. info 3 \"categories\", see package dir inst/ descriptions/limma_result_categories.pdf. mode character string specifying mode ('isolated' 'integrated'). filename character string specifying filename report. timestamp timestamp include report filename. report_dir character string specifying report directory.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_report_html.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"utils scripts contains shared functions that are used by at least two package functions of the SplineOmics package. The level separation is only valid internally in this script, and has no connection to the script level of the respective exported functions scripts. Generate Report HTML — generate_report_html","text":"return value, called side effects.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/generate_reports.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Reports — generate_reports","title":"Generate Reports — generate_reports","text":"Builds HTML reports pairwise hyperparameter combination comparisons.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_reports.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Reports — generate_reports","text":"","code":"generate_reports(combo_pair_plots, report_info, report_dir, timestamp)"},{"path":"https://csbg.github.io/SplineOmics/reference/generate_reports.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Reports — generate_reports","text":"combo_pair_plots list plots pair combinations. report_info object containing report information. report_dir non-empty string specifying report directory. timestamp timestamp include reports.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_reports.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Reports — generate_reports","text":"return value, called side effects.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_reports_meta.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Reports Metadata — generate_reports_meta","title":"Generate Reports Metadata — generate_reports_meta","text":"Generates metadata table LIMMA hyperparameter screen reports saves HTML file custom styling.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_reports_meta.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Reports Metadata — generate_reports_meta","text":"","code":"generate_reports_meta( datas_descr, designs, modes, spline_test_configs, report_dir, timestamp )"},{"path":"https://csbg.github.io/SplineOmics/reference/generate_reports_meta.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Reports Metadata — generate_reports_meta","text":"datas_descr description object data. designs list design matrices. modes character vector containing 'isolated' 'integrated'. spline_test_configs configuration object spline tests. report_dir non-empty string specifying report directory. timestamp timestamp include report filename.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_reports_meta.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Reports Metadata — generate_reports_meta","text":"return value, called side effects.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_section_content.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Section Content — generate_section_content","title":"Generate Section Content — generate_section_content","text":"Generates HTML content section, including headers enrichment results.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_section_content.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Section Content — generate_section_content","text":"","code":"generate_section_content( section_info, index, toc, html_content, section_header_style, toc_style )"},{"path":"https://csbg.github.io/SplineOmics/reference/generate_section_content.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Section Content — generate_section_content","text":"section_info list containing information section. index index current section. toc current state Table Contents. html_content current state HTML content. section_header_style CSS style section headers. toc_style CSS style TOC entries.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_section_content.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Section Content — generate_section_content","text":"list updated HTML content TOC.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_time_effect_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Plots for Time Effect — generate_time_effect_plots","title":"Generate Plots for Time Effect — generate_time_effect_plots","text":"Creates p-value histograms time effect LIMMA analysis. function used internally `create_limma_report` function.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_time_effect_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Plots for Time Effect — generate_time_effect_plots","text":"","code":"generate_time_effect_plots(time_effect, adj_pthresh)"},{"path":"https://csbg.github.io/SplineOmics/reference/generate_time_effect_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Plots for Time Effect — generate_time_effect_plots","text":"time_effect list top tables LIMMA analysis representing time effects. adj_pthresh numeric value specifying adjusted p-value threshold significance.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/generate_time_effect_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Plots for Time Effect — generate_time_effect_plots","text":"list containing plots sizes, well section header information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_curve_values.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate Curve Values Based on Top Table Filter — get_curve_values","title":"Calculate Curve Values Based on Top Table Filter — get_curve_values","text":"function filters entries given top table based adjusted p-value threshold, performs spline interpolation using specified degrees freedom, calculates curve values selected entries predefined time points. function internal exported.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_curve_values.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate Curve Values Based on Top Table Filter — get_curve_values","text":"","code":"get_curve_values(top_table, level, meta, condition, spline_params, mode)"},{"path":"https://csbg.github.io/SplineOmics/reference/get_curve_values.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate Curve Values Based on Top Table Filter — get_curve_values","text":"top_table data frame containing data column adjusted p-values expression averages indicate number degrees freedom. level specific level condition filter metadata. meta Metadata containing time points conditions. condition name condition column metadata filter . spline_params list spline parameters analysis. mode character string specifying mode ('isolated' 'integrated').","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_curve_values.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate Curve Values Based on Top Table Filter — get_curve_values","text":"list containing two elements: `curve_values`, data frame curve values filtered entry, `smooth_timepoints`, time points curves evaluated.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_explore_plots_explanations.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Plot Explanations — get_explore_plots_explanations","title":"Get Plot Explanations — get_explore_plots_explanations","text":"function returns vector text explanations various types plots. explanations used HTML reports describe plots.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_explore_plots_explanations.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Plot Explanations — get_explore_plots_explanations","text":"","code":"get_explore_plots_explanations()"},{"path":"https://csbg.github.io/SplineOmics/reference/get_explore_plots_explanations.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Plot Explanations — get_explore_plots_explanations","text":"character vector containing explanations different plot types.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_explore_plots_explanations.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Plot Explanations — get_explore_plots_explanations","text":"explanations cover variety plots, including density plots, boxplots, violin plots, mean time correlation plots, lag-1 differences plots, first lag autocorrelation plots, coefficient variation (CV) plots, PCA plots, PCA variance explained plots, MDS plots, correlation heatmaps. explanation provides insights plot shows interpret .","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_header_section.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Header Section — get_header_section","title":"Get Header Section — get_header_section","text":"Generates HTML header section report, including title, header text, logo. section also includes styling table HTML elements.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_header_section.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Header Section — get_header_section","text":"","code":"get_header_section(title, header_text, report_type, feature_names_formula)"},{"path":"https://csbg.github.io/SplineOmics/reference/get_header_section.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Header Section — get_header_section","text":"title string specifying title HTML document. header_text string specifying text displayed header report. report_type character specifying type HTML report. feature_names_formula String describing columns annotation info, gene uniprotID, used construct description individual spline plots. placed beginning output HTML reports.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_header_section.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Header Section — get_header_section","text":"string containing HTML header section.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_header_section.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Header Section — get_header_section","text":"function checks `DEVTOOLS_LOAD` environment variable determine path logo image. logo image converted base64 data URI included HTML. header section includes styles tables, table cells, header elements ensure proper formatting alignment.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_level_hit_indices.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Hit Indices for a Specific Level — get_level_hit_indices","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"function retrieves unique feature indices list -level top tables specified level, based adjusted p-value thresholds.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_level_hit_indices.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"","code":"get_level_hit_indices(between_level_top_tables, level, adj_pthresholds)"},{"path":"https://csbg.github.io/SplineOmics/reference/get_level_hit_indices.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"between_level_top_tables list data frames containing -level top tables. level string specifying level search within names data frames. adj_pthresholds numeric vector adjusted p-value thresholds data frame `between_level_top_tables`.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_level_hit_indices.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"vector unique feature indices meet adjusted p-value threshold criteria specified level.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_level_hit_indices.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Hit Indices for a Specific Level — get_level_hit_indices","text":"function iterates data frame `between_level_top_tables`. data frame whose name contains specified level (case insensitive), identifies rows adjusted p-value corresponding threshold. function extracts feature indices rows compiles unique list indices.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_limma_combos_results.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate LIMMA Combination Results — get_limma_combos_results","title":"Generate LIMMA Combination Results — get_limma_combos_results","text":"Computes results various combinations data, design matrices, spline configurations using LIMMA method.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_limma_combos_results.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate LIMMA Combination Results — get_limma_combos_results","text":"","code":"get_limma_combos_results( datas, rna_seq_datas, metas, designs, modes, condition, spline_test_configs, feature_names, adj_pthresholds, padjust_method )"},{"path":"https://csbg.github.io/SplineOmics/reference/get_limma_combos_results.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate LIMMA Combination Results — get_limma_combos_results","text":"datas list matrices. rna_seq_datas list RNA-seq data objects, voom object derived limma::voom function. metas list metadata corresponding data matrices. designs list design matrices. modes character vector containing 'isolated' 'integrated'. condition single character string specifying condition. spline_test_configs configuration object spline tests. feature_names character vector feature names. adj_pthresholds numeric vector elements > 0 < 1. padjust_method single character string specifying p-adjustment method.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_limma_combos_results.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate LIMMA Combination Results — get_limma_combos_results","text":"list results combination data, design, spline configuration.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_spline_params_info.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Spline Parameters Info — get_spline_params_info","title":"Get Spline Parameters Info — get_spline_params_info","text":"function retrieves spline parameters information given index. ensures spline parameters valid constructs HTML string describing spline parameters.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_spline_params_info.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Spline Parameters Info — get_spline_params_info","text":"","code":"get_spline_params_info(spline_params, j)"},{"path":"https://csbg.github.io/SplineOmics/reference/get_spline_params_info.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Spline Parameters Info — get_spline_params_info","text":"spline_params list containing spline parameters. list include elements: `spline_type`, `degree`, `dof`, `knots`, `bknots`. j integer specifying index spline parameters retrieve.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_spline_params_info.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Spline Parameters Info — get_spline_params_info","text":"character string containing HTML-formatted information spline parameters specified index.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/get_spline_params_info.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Spline Parameters Info — get_spline_params_info","text":"function checks spline parameters `NULL` length greater equal specified index `j`. parameter invalid missing, sets parameter `NA`. constructs HTML string describing spline parameters, including spline type, degree, degrees freedom (DoF), knots, boundary knots.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_add.html","id":null,"dir":"Reference","previous_headings":"","what":"Add Data to Hit Comparison Object — hc_add","title":"Add Data to Hit Comparison Object — hc_add","text":"Adds new entry hit comparison object specified condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_add.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add Data to Hit Comparison Object — hc_add","text":"","code":"hc_add(hc_obj, top_table, params_id, condition = 1, threshold = 0.05)"},{"path":"https://csbg.github.io/SplineOmics/reference/hc_add.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add Data to Hit Comparison Object — hc_add","text":"hc_obj object class \"hitcomp\". top_table dataframe containing top table data. params_id character string identifying parameters (max length 70). condition integer (1 2) specifying condition data belongs. threshold numeric value specifying adjusted p-value threshold.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_add.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add Data to Hit Comparison Object — hc_add","text":"updated hit comparison object.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_barplot.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Barplot for Hit Comparison Object — hc_barplot","title":"Generate Barplot for Hit Comparison Object — hc_barplot","text":"Creates barplot visualize number significant features parameter set hit comparison object.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_barplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Barplot for Hit Comparison Object — hc_barplot","text":"","code":"hc_barplot(hc_obj)"},{"path":"https://csbg.github.io/SplineOmics/reference/hc_barplot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Barplot for Hit Comparison Object — hc_barplot","text":"hc_obj object class \"hitcomp\" containing hit data two conditions.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_barplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Barplot for Hit Comparison Object — hc_barplot","text":"ggplot2 object representing barplot.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/hc_new.html","id":null,"dir":"Reference","previous_headings":"","what":"Create New Hit Comparison Object — hc_new","title":"Create New Hit Comparison Object — hc_new","text":"Creates new hit comparison object specified condition names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_new.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create New Hit Comparison Object — hc_new","text":"","code":"hc_new(cond1name = \"Condition 1\", cond2name = \"Condition 2\")"},{"path":"https://csbg.github.io/SplineOmics/reference/hc_new.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create New Hit Comparison Object — hc_new","text":"cond1name character string first condition name (max length 25). cond2name character string second condition name (max length 25).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_new.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create New Hit Comparison Object — hc_new","text":"object class \"hitcomp\" containing empty data lists condition names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_vennheatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Venn Heatmap — hc_vennheatmap","title":"Generate Venn Heatmap — hc_vennheatmap","text":"Creates Venn heatmap visualize overlap hits two conditions stored hit comparison object.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_vennheatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Venn Heatmap — hc_vennheatmap","text":"","code":"hc_vennheatmap(hc_obj)"},{"path":"https://csbg.github.io/SplineOmics/reference/hc_vennheatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Venn Heatmap — hc_vennheatmap","text":"hc_obj object class \"hitcomp\" containing hit data two conditions.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hc_vennheatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Venn Heatmap — hc_vennheatmap","text":"list containing Venn heatmap plot number hits.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/hierarchical_clustering.html","id":null,"dir":"Reference","previous_headings":"","what":"Hierarchical Clustering of Curve Values — hierarchical_clustering","title":"Hierarchical Clustering of Curve Values — hierarchical_clustering","text":"Performs hierarchical clustering given curve values. can automatically determine optimal number clusters using silhouette analysis use specified number. function adjusts provided top_table cluster assignments.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hierarchical_clustering.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Hierarchical Clustering of Curve Values — hierarchical_clustering","text":"","code":"hierarchical_clustering(curve_values, k, smooth_timepoints, top_table)"},{"path":"https://csbg.github.io/SplineOmics/reference/hierarchical_clustering.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Hierarchical Clustering of Curve Values — hierarchical_clustering","text":"curve_values matrix data frame curve values cluster. k number clusters use \"auto\" automatically determine optimal number using silhouette width analysis. smooth_timepoints Numeric vector time points corresponding columns curve_values. top_table Data frame updated cluster assignments.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/hierarchical_clustering.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Hierarchical Clustering of Curve Values — hierarchical_clustering","text":"list containing clustering results modified top_table.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/huge_table_user_prompter.html","id":null,"dir":"Reference","previous_headings":"","what":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","title":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","text":"function iterates list tables checks table 300 rows. table found, prompts user proceed stop.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/huge_table_user_prompter.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","text":"","code":"huge_table_user_prompter(tables)"},{"path":"https://csbg.github.io/SplineOmics/reference/huge_table_user_prompter.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","text":"tables list data frames.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/huge_table_user_prompter.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check if any table in a list has more than 300 rows and prompt user for input. — huge_table_user_prompter","text":"NULL. function used side effects (prompting user potentially stopping script).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/is_not_na.html","id":null,"dir":"Reference","previous_headings":"","what":"Check if Not All Values are NA — is_not_na","title":"Check if Not All Values are NA — is_not_na","text":"Determines given atomic vector contains least one non-NA value.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/is_not_na.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check if Not All Values are NA — is_not_na","text":"","code":"is_not_na(x)"},{"path":"https://csbg.github.io/SplineOmics/reference/is_not_na.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check if Not All Values are NA — is_not_na","text":"x atomic vector object.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/is_not_na.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check if Not All Values are NA — is_not_na","text":"TRUE vector contains least one non-NA value object atomic; FALSE otherwise.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_clustering_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Make Clustering Report — make_clustering_report","title":"Make Clustering Report — make_clustering_report","text":"Generates detailed clustering report including heatmaps, dendrograms, curve plots, consensus shapes level within condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_clustering_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make Clustering Report — make_clustering_report","text":"","code":"make_clustering_report( all_levels_clustering, condition, data, meta, annotation, genes, spline_params, adj_pthresholds, report_dir, mode, report_info, design, meta_batch_column, meta_batch2_column, plot_info, analysis_type, feature_name_columns )"},{"path":"https://csbg.github.io/SplineOmics/reference/make_clustering_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make Clustering Report — make_clustering_report","text":"all_levels_clustering list containing clustering results level within condition. condition character string specifying condition. data matrix data values. meta dataframe containing metadata. annotation Dataframe containig annotation info features, gene uniprotID, example. genes Character vector containing genes features. spline_params list spline parameters analysis. adj_pthresholds Numeric vector, containing float < 1 > 0 value. one float every level, adj. p-value threshold. report_dir character string specifying report directory. mode character string specifying mode ('isolated' 'integrated'). report_info object containing report information. design string representing limma design formula meta_batch_column character string specifying meta batch column. meta_batch2_column character string specifying second meta batch column. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.). analysis_type One strings \"time_effect\", \"avrg_diff_conditions\" , \"interaction_condition_time\". represent three different outputs limma analysis. info 3 \"categories\", see package dir inst/ descriptions/limma_result_categories.pdf. feature_name_columns Character vector containing column names annotation info describe features. argument used specify HTML report exactly feature names displayed individual spline plot created. Use vector used create row headers data matrix!","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_clustering_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make Clustering Report — make_clustering_report","text":"return value, called side effects.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/make_correlation_heatmaps.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Correlation Heatmaps — make_correlation_heatmaps","title":"Generate Correlation Heatmaps — make_correlation_heatmaps","text":"function generates correlation heatmaps using Spearman correlation given data matrix. creates combined heatmap levels individual heatmaps level specified condition column metadata.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_correlation_heatmaps.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Correlation Heatmaps — make_correlation_heatmaps","text":"","code":"make_correlation_heatmaps(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/make_correlation_heatmaps.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Correlation Heatmaps — make_correlation_heatmaps","text":"data numeric matrix containing data. meta dataframe containing metadata. condition column name metadata dataframe contains factor levels generating individual heatmaps.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_correlation_heatmaps.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Correlation Heatmaps — make_correlation_heatmaps","text":"list `ComplexHeatmap` heatmap objects representing correlation heatmaps.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_density_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Density Plot — make_density_plots","title":"Generate Density Plot — make_density_plots","text":"function generates density plot given data matrix. density plot shows distribution values data matrix.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_density_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Density Plot — make_density_plots","text":"","code":"make_density_plots(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/make_density_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Density Plot — make_density_plots","text":"data numeric matrix containing data. meta dataframe containing column meta data data condition name factor column meta experiment","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_density_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Density Plot — make_density_plots","text":"ggplot object representing density plot.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_enrich_dotplot.html","id":null,"dir":"Reference","previous_headings":"","what":"Make Enrich Dotplot — make_enrich_dotplot","title":"Make Enrich Dotplot — make_enrich_dotplot","text":"Make enriched dotplot visualization.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_enrich_dotplot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make Enrich Dotplot — make_enrich_dotplot","text":"","code":"make_enrich_dotplot(enrichments_list, databases, title = \"Title\")"},{"path":"https://csbg.github.io/SplineOmics/reference/make_enrich_dotplot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make Enrich Dotplot — make_enrich_dotplot","text":"enrichments_list list enrichments containing data frames different databases. databases character vector specifying databases included. title character string specifying title dotplot.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_enrich_dotplot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make Enrich Dotplot — make_enrich_dotplot","text":"list containing: p ggplot object representing dotplot. dotplot_nrows integer specifying number rows dotplot. full_enrich_results data frame containing full enrichments results.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_mds_plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate MDS Plot — make_mds_plot","title":"Generate MDS Plot — make_mds_plot","text":"function generates multidimensional scaling (MDS) plot given data matrix. MDS plot visualizes similarities dissimilarities samples data matrix.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_mds_plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate MDS Plot — make_mds_plot","text":"","code":"make_mds_plot(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/make_mds_plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate MDS Plot — make_mds_plot","text":"data numeric matrix containing data. meta dataframe, containign meta information data. condition column meta dataframe containign levels separate experiment.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_mds_plot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate MDS Plot — make_mds_plot","text":"ggplot object representing MDS plot.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_pca_plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","title":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","text":"function generates PCA plot data matrix, dynamically coloring points based levels specified factor metadata.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_pca_plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","text":"","code":"make_pca_plot(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/make_pca_plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","text":"data numeric matrix containing data. meta dataframe containing metadata. condition column name metadata dataframe contains factor levels coloring PCA plot.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_pca_plot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate PCA Plot with Dynamic Coloring — make_pca_plot","text":"ggplot object representing PCA plot.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_violin_box_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Violin Box Plot — make_violin_box_plots","title":"Generate Violin Box Plot — make_violin_box_plots","text":"function generates violin plot given data matrix. violin plot shows distribution values data matrix across different variables, variable's distribution displayed separate violin.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_violin_box_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Violin Box Plot — make_violin_box_plots","text":"","code":"make_violin_box_plots(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/make_violin_box_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Violin Box Plot — make_violin_box_plots","text":"data numeric matrix containing data. meta dataframe containing column meta data data condition name factor column meta experiment","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/make_violin_box_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Violin Box Plot — make_violin_box_plots","text":"ggplot object representing violin plot.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/manage_gsea_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","title":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","text":"function manages GSEA analysis specific level. extracts genes associated clustered hits, removes rows `NA` values, runs GSEA analysis using `create_gsea_report` function.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/manage_gsea_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","text":"","code":"manage_gsea_level( clustered_hits, level_name, databases, clusterProfiler_params )"},{"path":"https://csbg.github.io/SplineOmics/reference/manage_gsea_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","text":"clustered_hits dataframe containing clustered hits specific level. must include column named `feature` extract genes. level_name character string representing name level. databases list databases gene set enrichment analysis. clusterProfiler_params Additional parameters GSEA analysis, default NA. include adj_p_value, pAdjustMethod, etc (see clusterProfiler documentation).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/manage_gsea_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Manage GSEA Analysis for a Specific Level — manage_gsea_level","text":"result `create_gsea_report` function, typically includes various plots enrichment results.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/merge_annotation_all_levels_clustering.html","id":null,"dir":"Reference","previous_headings":"","what":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","title":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","text":"function merges annotation information `top_table` non-logical element list.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/merge_annotation_all_levels_clustering.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","text":"","code":"merge_annotation_all_levels_clustering(all_levels_clustering, annotation)"},{"path":"https://csbg.github.io/SplineOmics/reference/merge_annotation_all_levels_clustering.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","text":"all_levels_clustering list element contains `top_table` dataframe `feature_nr` column. elements may logical values. annotation dataframe containing annotation information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/merge_annotation_all_levels_clustering.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Merge Annotation with All Top Tables — merge_annotation_all_levels_clustering","text":"list updated `top_table` dataframes containing merged annotation information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/merge_top_table_with_annotation.html","id":null,"dir":"Reference","previous_headings":"","what":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","title":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","text":"function merges annotation information single `top_table` dataframe based `feature_nr` column.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/merge_top_table_with_annotation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","text":"","code":"merge_top_table_with_annotation(top_table, annotation)"},{"path":"https://csbg.github.io/SplineOmics/reference/merge_top_table_with_annotation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","text":"top_table dataframe containing `top_table` `feature_nr` column. annotation dataframe containing annotation information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/merge_top_table_with_annotation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Merge Annotation with a Single Top Table — merge_top_table_with_annotation","text":"dataframe updated `top_table` containing merged annotation information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/modify_limma_top_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Modify limma Top Table — modify_limma_top_table","title":"Modify limma Top Table — modify_limma_top_table","text":"Modifies limma top table include feature indices names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/modify_limma_top_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Modify limma Top Table — modify_limma_top_table","text":"","code":"modify_limma_top_table(top_table, feature_names)"},{"path":"https://csbg.github.io/SplineOmics/reference/modify_limma_top_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Modify limma Top Table — modify_limma_top_table","text":"top_table dataframe containing top table results limma feature_names character vector feature names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/modify_limma_top_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Modify limma Top Table — modify_limma_top_table","text":"tibble feature indices names included.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/normalize_curves.html","id":null,"dir":"Reference","previous_headings":"","what":"Normalize Curve Values — normalize_curves","title":"Normalize Curve Values — normalize_curves","text":"function normalizes row data frame matrix curve values. Normalization performed row's values range 0 (corresponding minimum value row) 1 (corresponding maximum value row).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/normalize_curves.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Normalize Curve Values — normalize_curves","text":"","code":"normalize_curves(curve_values)"},{"path":"https://csbg.github.io/SplineOmics/reference/normalize_curves.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Normalize Curve Values — normalize_curves","text":"curve_values data frame matrix curve values row represents curve column time point.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/normalize_curves.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Normalize Curve Values — normalize_curves","text":"data frame matrix dimensions input, row normalized.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/open_template.html","id":null,"dir":"Reference","previous_headings":"","what":"Open Template for Quick Setup — open_template","title":"Open Template for Quick Setup — open_template","text":"function opens `template.Rmd` file RStudio interactive use. template file provides structure users quickly set personal analysis.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/open_template.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Open Template for Quick Setup — open_template","text":"","code":"open_template()"},{"path":"https://csbg.github.io/SplineOmics/reference/open_tutorial.html","id":null,"dir":"Reference","previous_headings":"","what":"Interactive Tutorial for Getting Started — open_tutorial","title":"Interactive Tutorial for Getting Started — open_tutorial","text":"function opens `tutorial.Rmd` file RStudio interactive use. Users can run code chunk step step.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/open_tutorial.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Interactive Tutorial for Getting Started — open_tutorial","text":"","code":"open_tutorial()"},{"path":"https://csbg.github.io/SplineOmics/reference/perform_clustering.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform Clustering — perform_clustering","title":"Perform Clustering — perform_clustering","text":"Performs clustering top tables using specified p-values clusters level within condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/perform_clustering.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform Clustering — perform_clustering","text":"","code":"perform_clustering(top_tables, clusters, meta, condition, spline_params, mode)"},{"path":"https://csbg.github.io/SplineOmics/reference/perform_clustering.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform Clustering — perform_clustering","text":"top_tables list top tables limma analysis. clusters list specifying clusters \"auto\" automatic estimation. meta dataframe containing metadata. condition character string specifying condition. spline_params list spline parameters analysis. mode character string specifying mode ('isolated' 'integrated').","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/perform_clustering.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform Clustering — perform_clustering","text":"list clustering results level within condition.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/plot2base64.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert Plot to Base64 — plot2base64","title":"Convert Plot to Base64 — plot2base64","text":"Converts ggplot2 plot Base64-encoded PNG image returns HTML img tag embedding report.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot2base64.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert Plot to Base64 — plot2base64","text":"","code":"plot2base64( plot, height, width = 7, base_height_per_row = 2.5, units = \"in\", html_img_width = \"100%\" )"},{"path":"https://csbg.github.io/SplineOmics/reference/plot2base64.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert Plot to Base64 — plot2base64","text":"plot ggplot2 plot object. height integer specifying height plot correct representation HTML. width numeric value specifying width plot inches. base_height_per_row numeric value specifying base height per row inches. units character string specifying units width height. html_img_width character string specifying width image HTML.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot2base64.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert Plot to Base64 — plot2base64","text":"character string containing HTML img tag Base64-encoded plot.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/plot_all_mean_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot All Mean Splines — plot_all_mean_splines","title":"Plot All Mean Splines — plot_all_mean_splines","text":"Generates plot average curves cluster, showing min-max normalized intensities time.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_all_mean_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot All Mean Splines — plot_all_mean_splines","text":"","code":"plot_all_mean_splines(curve_values, plot_info)"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_all_mean_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot All Mean Splines — plot_all_mean_splines","text":"curve_values dataframe containing curve values cluster assignments. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_all_mean_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot All Mean Splines — plot_all_mean_splines","text":"ggplot object representing average curves cluster.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_cluster_mean_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Consensus Shapes — plot_cluster_mean_splines","title":"Plot Consensus Shapes — plot_cluster_mean_splines","text":"Generates composite plots single consensus shapes cluster curve values.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_cluster_mean_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Consensus Shapes — plot_cluster_mean_splines","text":"","code":"plot_cluster_mean_splines(curve_values, plot_info)"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_cluster_mean_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Consensus Shapes — plot_cluster_mean_splines","text":"curve_values dataframe containing curve values cluster assignments. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_cluster_mean_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Consensus Shapes — plot_cluster_mean_splines","text":"list containing plot every cluster","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/plot_composite_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Composite Splines — plot_composite_splines","title":"Plot Composite Splines — plot_composite_splines","text":"Generates composite spline plots significant non-significant features based specified indices.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_composite_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Composite Splines — plot_composite_splines","text":"","code":"plot_composite_splines( data, meta, spline_test_configs, top_table, top_table_name, indices, type, time_unit_label )"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_composite_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Composite Splines — plot_composite_splines","text":"data matrix data values. meta dataframe containing metadata. spline_test_configs configuration object spline tests. top_table dataframe containing top table results. top_table_name character string specifying name top table. indices vector indices specifying features plot. type character string specifying type features ('significant' 'not_significant'). time_unit_label string shown plots unit time, min hours.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_composite_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Composite Splines — plot_composite_splines","text":"list containing composite plot length plots generated, FALSE otherwise.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/plot_cv.html","id":null,"dir":"Reference","previous_headings":"","what":"Coefficient of Variation (CV) Plot — plot_cv","title":"Coefficient of Variation (CV) Plot — plot_cv","text":"function takes data frame time series data (rows features columns samples), meta table sample information including time points conditions, computes coefficient variation (CV) feature condition level, plots distribution CVs.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_cv.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coefficient of Variation (CV) Plot — plot_cv","text":"","code":"plot_cv(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_cv.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coefficient of Variation (CV) Plot — plot_cv","text":"data data frame rows features columns samples. meta data frame sample metadata. Must contain column \"Time\" condition column. condition name column meta table contains condition information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_cv.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coefficient of Variation (CV) Plot — plot_cv","text":"list ggplot2 objects, showing distribution CVs one condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_dendrogram.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Dendrogram — plot_dendrogram","title":"Plot Dendrogram — plot_dendrogram","text":"Generates dendrogram plot hierarchical clustering results, colored clusters.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_dendrogram.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Dendrogram — plot_dendrogram","text":"","code":"plot_dendrogram(hc, k)"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_dendrogram.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Dendrogram — plot_dendrogram","text":"hc hierarchical clustering object. k integer specifying number clusters.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_dendrogram.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Dendrogram — plot_dendrogram","text":"ggplot object representing dendrogram.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/plot_first_lag_autocorrelation.html","id":null,"dir":"Reference","previous_headings":"","what":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","title":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","text":"function takes data frame time series data (rows features columns samples), meta table sample information including time points conditions, computes first lag autocorrelation feature condition level, plots distribution autocorrelation coefficients.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_first_lag_autocorrelation.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","text":"","code":"plot_first_lag_autocorrelation(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_first_lag_autocorrelation.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","text":"data data frame rows features columns samples. meta data frame sample metadata. Must contain column \"Time\" condition column. condition name column meta table contains condition information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_first_lag_autocorrelation.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"First Lag Autocorrelation Coefficients Plot — plot_first_lag_autocorrelation","text":"list ggplot2 objects, showing distribution first lag autocorrelation coefficients one condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_heatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Heatmap — plot_heatmap","title":"Plot Heatmap — plot_heatmap","text":"Generates heatmaps level within condition, showing z-scores log2 intensity values, split clusters.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_heatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Heatmap — plot_heatmap","text":"","code":"plot_heatmap( datas, meta, mode, condition, all_levels_clustering, time_unit_label )"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_heatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Heatmap — plot_heatmap","text":"datas matrix data values. meta dataframe containing metadata. mode character vector length 1, specifying type limma design formula (integrated formulas interaction effects levels, isolated formulas level analysed isolation (interaction effects)) condition character string specifying condition. all_levels_clustering list containing clustering results level within condition. time_unit_label character string specifying time unit label.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_heatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Heatmap — plot_heatmap","text":"list ComplexHeatmap heatmap objects level.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/plot_lag1_differences.html","id":null,"dir":"Reference","previous_headings":"","what":"Lag-1 Differences Plot — plot_lag1_differences","title":"Lag-1 Differences Plot — plot_lag1_differences","text":"function takes data frame time series data (rows features columns samples), meta table sample information including time points conditions, computes lag-1 differences feature condition level, plots distribution differences.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_lag1_differences.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Lag-1 Differences Plot — plot_lag1_differences","text":"","code":"plot_lag1_differences(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_lag1_differences.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Lag-1 Differences Plot — plot_lag1_differences","text":"data data frame rows features columns samples. meta data frame sample metadata. Must contain column \"Time\" condition column. condition name column meta table contains condition information.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_lag1_differences.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Lag-1 Differences Plot — plot_lag1_differences","text":"list ggplot2 objects, showing distribution lag-1 differences one condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_limma_combos_results.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot limma Combination Results — plot_limma_combos_results","title":"Plot limma Combination Results — plot_limma_combos_results","text":"Generates plots pairwise comparisons hyperparameter combinations using limma results.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_limma_combos_results.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot limma Combination Results — plot_limma_combos_results","text":"","code":"plot_limma_combos_results( top_tables_combos, datas, metas, condition, spline_test_configs, meta_batch_column, meta_batch2_column, time_unit = time_unit )"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_limma_combos_results.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot limma Combination Results — plot_limma_combos_results","text":"top_tables_combos list top tables combination. datas list matrices. metas list metadata corresponding data matrices. condition Meta column name contains levels. spline_test_configs configuration object spline tests. meta_batch_column character string specifying meta batch column. meta_batch2_column character string specifying second meta batch column. time_unit single character, s, m, h, d, specifying time_unit used plots (s = seconds, m = minutes, h = hours, d = days). single character converted string little bit verbose, sec square brackets s.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_limma_combos_results.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot limma Combination Results — plot_limma_combos_results","text":"list results including hit comparison plots composite spline plots pair combinations.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_mean_correlation_with_time.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","title":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","text":"function takes data frame time series data (rows features columns samples) meta table sample information including time points, computes correlation feature time, plots distribution correlations.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_mean_correlation_with_time.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","text":"","code":"plot_mean_correlation_with_time(data, meta, condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_mean_correlation_with_time.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","text":"data data frame rows features columns samples. meta data frame sample metadata. Must contain column \"Time\". condition column meta dataframe containign levels separate experiment.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_mean_correlation_with_time.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Mean Correlation with Time Plot — plot_mean_correlation_with_time","text":"ggplot2 object showing distribution mean correlations time. @importFrom rlang .data","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_single_and_mean_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Single and Mean Splines — plot_single_and_mean_splines","title":"Plot Single and Mean Splines — plot_single_and_mean_splines","text":"Generates plot showing individual time series shapes consensus (mean) shape.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_single_and_mean_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Single and Mean Splines — plot_single_and_mean_splines","text":"","code":"plot_single_and_mean_splines(time_series_data, title, plot_info)"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_single_and_mean_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Single and Mean Splines — plot_single_and_mean_splines","text":"time_series_data dataframe matrix time series data. title character string specifying title plot. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_single_and_mean_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Single and Mean Splines — plot_single_and_mean_splines","text":"ggplot object representing single consensus shapes.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/plot_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Splines for Features Based on Top Table Information — plot_splines","title":"Plot Splines for Features Based on Top Table Information — plot_splines","text":"function generates plots feature listed top table using spline interpolation fitted values. creates individual plots feature combines single composite plot. function internal exported.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Splines for Features Based on Top Table Information — plot_splines","text":"","code":"plot_splines( top_table, data, meta, X, time_unit_label, plot_info, adj_pthreshold )"},{"path":"https://csbg.github.io/SplineOmics/reference/plot_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Splines for Features Based on Top Table Information — plot_splines","text":"top_table dataframe containing indices names features, along statistical metrics intercepts spline coefficients. data matrix dataframe containing raw data values feature. meta dataframe containing metadata data, including time points. X limma design matrix defines experimental conditions. time_unit_label string shown plots unit time, min hours. plot_info List containing elements y_axis_label (string), time_unit (string), treatment_labels (character vector), treatment_timepoints (integer vector). can also NA. list used add info spline plots. time_unit used label x-axis, treatment_labels -timepoints used create vertical dashed lines, indicating positions treatments (feeding, temperature shift, etc.). adj_pthreshold Double > 0 < 1 specifying adj. p-val threshold.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/plot_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Splines for Features Based on Top Table Information — plot_splines","text":"list containing composite plot number rows used plot layout.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/prepare_gene_lists_for_enrichr.html","id":null,"dir":"Reference","previous_headings":"","what":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","title":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","text":"function processes clustered hits element `all_levels_clustering`, formats gene names easy copy-pasting Enrichr, returns formatted gene lists string.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/prepare_gene_lists_for_enrichr.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","text":"","code":"prepare_gene_lists_for_enrichr(all_levels_clustering, genes)"},{"path":"https://csbg.github.io/SplineOmics/reference/prepare_gene_lists_for_enrichr.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","text":"all_levels_clustering list element contains dataframe `clustered_hits` columns `feature` `cluster`. genes vector gene names corresponding feature indices.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/prepare_gene_lists_for_enrichr.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prepare Gene Lists for Enrichr and Return as String — prepare_gene_lists_for_enrichr","text":"character vector formatted gene lists cluster.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/prepare_plot_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Prepare Plot Data — prepare_plot_data","title":"Prepare Plot Data — prepare_plot_data","text":"function prepares plot data visualization based enrichments lists specified databases.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/prepare_plot_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prepare Plot Data — prepare_plot_data","text":"","code":"prepare_plot_data(enrichments_list, databases)"},{"path":"https://csbg.github.io/SplineOmics/reference/prepare_plot_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prepare Plot Data — prepare_plot_data","text":"enrichments_list list enrichments containing data frames different databases. databases character vector specifying databases included.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/prepare_plot_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Prepare Plot Data — prepare_plot_data","text":"list containing two data frames: top_plot_data data frame containing prepared plot data visualization top combinations. full_enrich_results data frame containing full enrichments results.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/preprocess_rna_seq_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","title":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","text":"`preprocess_rna_seq_data()` function performs essential preprocessing steps raw RNA-seq counts. includes creating `DGEList` object, normalizing counts using default TMM (Trimmed Mean M-values) normalization via `edgeR::calcNormFactors` function, applying `voom` transformation `limma` package obtain log-transformed counts per million (logCPM) associated precision weights. require different normalization method, can supply custom normalization function.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/preprocess_rna_seq_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","text":"","code":"preprocess_rna_seq_data( raw_counts, meta, spline_params, design, normalize_func = NULL )"},{"path":"https://csbg.github.io/SplineOmics/reference/preprocess_rna_seq_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","text":"raw_counts matrix raw RNA-seq counts (genes rows, samples columns). meta dataframe containing metadata data. spline_params Parameters spline functions (optional). Must contain named elements spline_type, must contain either string \"n\" natural cubic splines, \"b\", B-splines, named element degree case B-splines, must contain integer, named element dof, specifying degree freedom, containing integer required natural B-splines. design design formula limma analysis, '~ 1 + Phase*X + Reactor'. normalize_func optional normalization function. provided, function used normalize `DGEList` object. provided, TMM normalization (via `edgeR::calcNormFactors`) used default. Must take input y : y <- edgeR::DGEList(counts = raw_counts) output y normalized counts.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/preprocess_rna_seq_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform default preprocessing of raw RNA-seq counts — preprocess_rna_seq_data","text":"`voom` object, includes log2-counts per million (logCPM) matrix observation-specific weights.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/print_info_message.html","id":null,"dir":"Reference","previous_headings":"","what":"Print Informational Message — print_info_message","title":"Print Informational Message — print_info_message","text":"function prints nicely formatted informational message green \"Info\" label.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/print_info_message.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Print Informational Message — print_info_message","text":"","code":"print_info_message(message_prefix, report_dir)"},{"path":"https://csbg.github.io/SplineOmics/reference/print_info_message.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Print Informational Message — print_info_message","text":"message_prefix custom message prefix displayed success message. report_dir directory HTML reports located.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_combo.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Combination — process_combo","title":"Process Combination — process_combo","text":"Processes single combination data, design, spline configuration, p-threshold generate LIMMA spline results.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_combo.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Combination — process_combo","text":"","code":"process_combo( data_index, design_index, spline_config_index, pthreshold, datas, rna_seq_datas, metas, designs, modes, condition, spline_test_configs, feature_names, padjust_method, ... )"},{"path":"https://csbg.github.io/SplineOmics/reference/process_combo.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Combination — process_combo","text":"data_index Index data datas list. design_index Index design designs list. spline_config_index Index spline configuration spline_test_configs list. pthreshold p-value threshold significance. datas list data matrices rna_seq_datas list RNA-seq data objects, voom object derived limma::voom function. metas list metadata corresponding data matrices. designs list design matrices. modes character vector containing 'isolated' 'integrated'. condition single character string specifying condition. spline_test_configs configuration object spline tests. feature_names character vector feature names. padjust_method single character string specifying p-adjustment method. ... Additional arguments.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_combo.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Combination — process_combo","text":"list top tables LIMMA spline analysis.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/process_combo_pair.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Combination Pair — process_combo_pair","title":"Process Combination Pair — process_combo_pair","text":"Processes combination pair generate plots compile HTML report.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_combo_pair.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Combination Pair — process_combo_pair","text":"","code":"process_combo_pair( combo_pair, combo_pair_name, report_info, report_dir, timestamp )"},{"path":"https://csbg.github.io/SplineOmics/reference/process_combo_pair.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Combination Pair — process_combo_pair","text":"combo_pair list containing hit comparison composite spline plots. combo_pair_name character string naming combination pair. report_info object containing report information. report_dir non-empty string specifying report directory. timestamp timestamp include report filename.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_combo_pair.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Combination Pair — process_combo_pair","text":"return value, called side effects.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/process_config_column.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Configuration Column — process_config_column","title":"Process Configuration Column — process_config_column","text":"Processes configuration column based given mode number levels.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_config_column.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Configuration Column — process_config_column","text":"","code":"process_config_column(config_column, index, num_levels, mode)"},{"path":"https://csbg.github.io/SplineOmics/reference/process_config_column.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Configuration Column — process_config_column","text":"config_column configuration column spline test configurations. index Index configuration process. num_levels Number unique levels metadata condition. mode character string specifying mode ('integrated' 'isolated').","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_config_column.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Configuration Column — process_config_column","text":"vector list processed configuration values.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_enrichment_results.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Enrichment Results — process_enrichment_results","title":"Process Enrichment Results — process_enrichment_results","text":"Process enrichment results visualization.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_enrichment_results.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Enrichment Results — process_enrichment_results","text":"","code":"process_enrichment_results( all_db_results, enrichment_results, adjP_threshold, column_name, count_column_name, background = FALSE )"},{"path":"https://csbg.github.io/SplineOmics/reference/process_enrichment_results.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Enrichment Results — process_enrichment_results","text":"all_db_results list data frames containing enrichment results databases. enrichment_results list data frames containing enrichment results individual databases. adjP_threshold threshold adjusted p-values. column_name name column store adjusted p-values. count_column_name name column store gene counts. background Logical indicating whether background ratios included.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_enrichment_results.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Enrichment Results — process_enrichment_results","text":"list data frames containing processed enrichment results.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_field.html","id":null,"dir":"Reference","previous_headings":"","what":"Process and Encode Data Field for Report — process_field","title":"Process and Encode Data Field for Report — process_field","text":"function processes given field, encodes associated data base64, generates download link report. handles different types fields including data, meta, top tables, Enrichr formatted gene lists.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_field.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process and Encode Data Field for Report — process_field","text":"","code":"process_field( field, data, meta, topTables, report_info, encode_df_to_base64, report_type, enrichr_format )"},{"path":"https://csbg.github.io/SplineOmics/reference/process_field.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process and Encode Data Field for Report — process_field","text":"field string specifying field process. data dataframe containing main data. meta dataframe containing meta information. topTables dataframe containing results differential expression analysis. report_info list containing additional report information. encode_df_to_base64 function encode dataframe base64. report_type string specifying type report. enrichr_format list formatted gene lists background gene list.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_field.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process and Encode Data Field for Report — process_field","text":"string containing HTML link downloading processed field.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_level_cluster.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Level Cluster — process_level_cluster","title":"Process Level Cluster — process_level_cluster","text":"Processes clustering specific level within condition using provided top table spline parameters.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_level_cluster.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Level Cluster — process_level_cluster","text":"","code":"process_level_cluster( top_table, cluster_size, level, meta, condition, spline_params, mode )"},{"path":"https://csbg.github.io/SplineOmics/reference/process_level_cluster.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Level Cluster — process_level_cluster","text":"top_table dataframe containing top table results limma. cluster_size size clusters generate. level level within condition process. meta dataframe containing metadata. condition character string specifying condition. spline_params list spline parameters analysis. mode character string specifying mode ('isolated' 'integrated').","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_level_cluster.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Level Cluster — process_level_cluster","text":"list containing clustering results, including curve values design matrix.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/process_plots.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Plots — process_plots","title":"Process Plots — process_plots","text":"Converts plots base64 appends HTML content.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_plots.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Plots — process_plots","text":"","code":"process_plots( plots_element, plots_size, html_content, toc, header_index, element_name = NA )"},{"path":"https://csbg.github.io/SplineOmics/reference/process_plots.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Plots — process_plots","text":"plots_element list plots processed. plots_size list sizes plots. html_content current state HTML content. toc current state table contents (TOC). header_index index uniquely identify section anchoring. element_name character string specifying name element.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_plots.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Plots — process_plots","text":"Updated HTML content plots included.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_result.html","id":null,"dir":"Reference","previous_headings":"","what":"Process GSEA Result for a Specific Level — process_result","title":"Process GSEA Result for a Specific Level — process_result","text":"function processes GSEA result specific level. handles cases result contains `NA` values adding section break. Otherwise, extracts plot, plot size, header information result.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_result.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process GSEA Result for a Specific Level — process_result","text":"","code":"process_result(level_result, level_name)"},{"path":"https://csbg.github.io/SplineOmics/reference/process_result.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process GSEA Result for a Specific Level — process_result","text":"level_result list containing GSEA result specific level. level_name character string representing name level.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_result.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process GSEA Result for a Specific Level — process_result","text":"list following components: plot plot object \"section_break\" result contains `NA`. plot_size integer indicating size plot. header_info list header information, including level name, full enrichment results, raw enrichment results available.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_top_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Top Table — process_top_table","title":"Process Top Table — process_top_table","text":"Processes top table LIMMA analysis, adding feature names intercepts.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_top_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Top Table — process_top_table","text":"","code":"process_top_table(process_within_level_result, feature_names)"},{"path":"https://csbg.github.io/SplineOmics/reference/process_top_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Top Table — process_top_table","text":"process_within_level_result List lists containing limma topTable, fit. one specific level. feature_names non-empty character vector feature names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_top_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Top Table — process_top_table","text":"dataframe containing processed top table added intercepts.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/process_within_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Process Within Level — process_within_level","title":"Process Within Level — process_within_level","text":"Performs within-level analysis using limma generate top tables fit objects based specified spline parameters. Performs limma spline analysis selected level factor","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_within_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Process Within Level — process_within_level","text":"","code":"process_within_level( data, rna_seq_data, meta, design, spline_params, level_index, padjust_method )"},{"path":"https://csbg.github.io/SplineOmics/reference/process_within_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Process Within Level — process_within_level","text":"data matrix data values. rna_seq_data object containing preprocessed RNA-seq data, output `limma::voom` similar preprocessing pipeline. meta dataframe containing metadata, including 'Time' column. design design formula matrix limma analysis. spline_params list spline parameters analysis. level_index index level within factor. padjust_method character string specifying p-adjustment method.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/process_within_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Process Within Level — process_within_level","text":"list containing top table fit object limma analysis.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/read_section_texts.html","id":null,"dir":"Reference","previous_headings":"","what":"Read and split section texts from a file — read_section_texts","title":"Read and split section texts from a file — read_section_texts","text":"internal function reads contents text file located `inst/descriptions` directory package splits individual sections based specified delimiter.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/read_section_texts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read and split section texts from a file — read_section_texts","text":"","code":"read_section_texts(filename)"},{"path":"https://csbg.github.io/SplineOmics/reference/read_section_texts.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read and split section texts from a file — read_section_texts","text":"filename character string specifying name file containing section texts. file located `inst/descriptions` directory package.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/read_section_texts.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read and split section texts from a file — read_section_texts","text":"character vector element section text split delimiter `|`.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/remove_batch_effect.html","id":null,"dir":"Reference","previous_headings":"","what":"Remove Batch Effect — remove_batch_effect","title":"Remove Batch Effect — remove_batch_effect","text":"Removes batch effects data matrices using specified batch column metadata.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/remove_batch_effect.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Remove Batch Effect — remove_batch_effect","text":"","code":"remove_batch_effect( datas, metas, meta_batch_column, meta_batch2_column, condition )"},{"path":"https://csbg.github.io/SplineOmics/reference/remove_batch_effect.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Remove Batch Effect — remove_batch_effect","text":"datas list matrices. metas list metadata corresponding data matrices. meta_batch_column character string specifying meta batch column. meta_batch2_column character string specifying second meta batch column. condition character vector length 1, specifying column name meta dataframe, contains levels separate experiment.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/remove_batch_effect.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Remove Batch Effect — remove_batch_effect","text":"list matrices batch effects removed applicable.","code":""},{"path":[]},{"path":"https://csbg.github.io/SplineOmics/reference/remove_batch_effect_cluster_hits.html","id":null,"dir":"Reference","previous_headings":"","what":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"function removes batch effects data level specified condition. supports isolated integrated modes, optional handling second batch column.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/remove_batch_effect_cluster_hits.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"","code":"remove_batch_effect_cluster_hits( data, meta, condition, meta_batch_column, meta_batch2_column, design, mode, spline_params )"},{"path":"https://csbg.github.io/SplineOmics/reference/remove_batch_effect_cluster_hits.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"data dataframe containing main data. meta dataframe containing meta information. condition string specifying column `meta` divides experiment levels. meta_batch_column string specifying column `meta` indicates batch information. meta_batch2_column string specifying second batch column `meta`, applicable. design design matrix experiment. mode string indicating mode operation: \"isolated\" \"integrated\". spline_params list spline parameters design matrix.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/remove_batch_effect_cluster_hits.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"list dataframes batch effects removed level.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/remove_batch_effect_cluster_hits.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Remove Batch Effect from Cluster Hits — remove_batch_effect_cluster_hits","text":"function operates two modes: isolated Processes level independently, using data level. integrated Processes entire dataset together. `meta_batch_column` specified, function removes batch effects using `removeBatchEffect`. second batch column (`meta_batch2_column`) specified, also included batch effect removal.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/remove_prefix.html","id":null,"dir":"Reference","previous_headings":"","what":"Remove Prefix from String — remove_prefix","title":"Remove Prefix from String — remove_prefix","text":"Removes specified prefix beginning string. function useful cleaning standardizing strings removing known prefixes.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/remove_prefix.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Remove Prefix from String — remove_prefix","text":"","code":"remove_prefix(string, prefix)"},{"path":"https://csbg.github.io/SplineOmics/reference/remove_prefix.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Remove Prefix from String — remove_prefix","text":"string string prefix removed. prefix string representing prefix removed.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/remove_prefix.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Remove Prefix from String — remove_prefix","text":"string prefix removed.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/run_gsea.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate a GSEA Report — run_gsea","title":"Generate a GSEA Report — run_gsea","text":"function generates Gene Set Enrichment Analysis (GSEA) report based clustered hit levels, gene data, specified databases. processes input data, manages GSEA levels, produces HTML report plots.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/run_gsea.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate a GSEA Report — run_gsea","text":"","code":"run_gsea( levels_clustered_hits, databases, report_info, clusterProfiler_params = NA, plot_titles = NA, background = NULL, report_dir = here::here() )"},{"path":"https://csbg.github.io/SplineOmics/reference/run_gsea.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate a GSEA Report — run_gsea","text":"levels_clustered_hits list clustered hits different levels. databases list databases gene set enrichment analysis. report_info list containing information report generation. clusterProfiler_params Additional parameters GSEA analysis, default NA. include adj_p_value, pAdjustMethod, etc (see clusterProfiler documentation). plot_titles Titles plots, default NA. background Background data, default NULL. report_dir Directory report saved, default `::()`.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/run_gsea.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate a GSEA Report — run_gsea","text":"list plots generated GSEA report.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/run_limma_splines.html","id":null,"dir":"Reference","previous_headings":"","what":"Run limma analysis with splines — run_limma_splines","title":"Run limma analysis with splines — run_limma_splines","text":"function performs limma spline analysis identify significant time-dependent changes features (e.g., proteins) within omics time-series dataset. evaluates features within condition level levels comparing average differences interactions time condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/run_limma_splines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Run limma analysis with splines — run_limma_splines","text":"","code":"run_limma_splines(splineomics)"},{"path":"https://csbg.github.io/SplineOmics/reference/run_limma_splines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Run limma analysis with splines — run_limma_splines","text":"splineomics S3 object class `SplineOmics` contains following elements: data: matrix omics dataset, feature names optionally row headers. rna_seq_data: object containing preprocessed RNA-seq data, output `limma::voom` similar preprocessing pipeline. meta: dataframe containing metadata corresponding data, must include 'Time' column column specified condition. design: character string representing limma design formula. condition: character string specifying column name meta used define groups analysis. spline_params: list spline parameters used analysis, including: spline_type: type spline (e.g., \"n\" natural splines \"b\" B-splines). dof: Degrees freedom spline. knots: Positions internal knots (B-splines). bknots: Boundary knots (B-splines). degree: Degree spline (B-splines ).","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/run_limma_splines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Run limma analysis with splines — run_limma_splines","text":"SplineOmics object, updated list three elements: - `time_effect`: list top tables level time effect. - `avrg_diff_conditions`: list top tables comparison levels. comparison average difference values. - `interaction_condition_time`: list top tables comparison levels. comparison interaction condition time.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/screen_limma_hyperparams.html","id":null,"dir":"Reference","previous_headings":"","what":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","title":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","text":"function screens various combinations hyperparameters limma analysis, including designs, modes, degrees freedom. validates inputs, generates results combinations, plots outcomes. Finally, may also involved generating HTML report part larger analysis workflow.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/screen_limma_hyperparams.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","text":"","code":"screen_limma_hyperparams( splineomics, datas, datas_descr, metas, designs, spline_test_configs, report_dir = here::here(), adj_pthresholds = c(0.05), rna_seq_datas = NULL, time_unit = \"min\", padjust_method = \"BH\" )"},{"path":"https://csbg.github.io/SplineOmics/reference/screen_limma_hyperparams.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","text":"splineomics S3 object class `SplineOmics` contains necessary data parameters analysis, including: condition: string specifying column name meta dataframe, contains levels separate experiment ('treatment' can condition, 'drug' 'drug' can levels condition). report_info: meta_batch_column: character string specifying meta batch column. meta_batch2_column: character string specifying second meta batch column (limma function removeBatchEffect supports maximum two batch columns.) datas list matrices containing datasets analyzed. datas_descr description object data. metas list data frames containing metadata dataset `datas`. designs character vector design formulas limma analysis. spline_test_configs configuration object spline tests. report_dir non-empty string specifying report directory. adj_pthresholds numeric vector p-value thresholds significance determination. rna_seq_datas list RNA-seq data objects, voom object derived limma::voom function. time_unit character string specifying time unit label plots. padjust_method character string specifying method p-value adjustment.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/screen_limma_hyperparams.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"screen_limma_hyperparams.R contains the exported package function screen_limma_hyperparams and all the functions that make up the functionality of screen_limma_hyperparams. screen_limma_hyperparams runs the other package function, run_limma_splines, for a time series omics dataset, for different hyperparameters. Such are for example degree of freedom of the spline, type of spline, limma design formula, and different versions of the data (full data vs. outliers removed). This can result in several combinations, and it is tedious analyzing the combination in an organised and structured manner. Therefore, this function streamlines that process. Limma Hyperparameters Screening — screen_limma_hyperparams","text":"Returns list plots generated limma analysis results. element list corresponds different combination hyperparameters.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/set_default_params.html","id":null,"dir":"Reference","previous_headings":"","what":"Set Default Parameters — set_default_params","title":"Set Default Parameters — set_default_params","text":"function checks provided `params` list `NA` missing elements. `params` `NA`, assigns list default parameters. element missing `params`, adds missing element respective default value.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/set_default_params.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Set Default Parameters — set_default_params","text":"","code":"set_default_params(params)"},{"path":"https://csbg.github.io/SplineOmics/reference/set_default_params.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Set Default Parameters — set_default_params","text":"params list parameters checked updated default values necessary.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/set_default_params.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Set Default Parameters — set_default_params","text":"list parameters required elements, either input `params` added default values missing elements.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/shorten_names.html","id":null,"dir":"Reference","previous_headings":"","what":"Shorten Names — shorten_names","title":"Shorten Names — shorten_names","text":"Replaces occurrences unique values within name first three characters. function useful abbreviating long condition names dataset.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/shorten_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Shorten Names — shorten_names","text":"","code":"shorten_names(name, unique_values)"},{"path":"https://csbg.github.io/SplineOmics/reference/shorten_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Shorten Names — shorten_names","text":"name string representing name shortened. unique_values vector unique values whose abbreviations replace occurrences name.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/shorten_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Shorten Names — shorten_names","text":"string unique values replaced abbreviations.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/store_hits.html","id":null,"dir":"Reference","previous_headings":"","what":"Store Hits — store_hits","title":"Store Hits — store_hits","text":"Stores feature indices significant hits based adjusted p-value threshold condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/store_hits.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Store Hits — store_hits","text":"","code":"store_hits(condition)"},{"path":"https://csbg.github.io/SplineOmics/reference/store_hits.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Store Hits — store_hits","text":"condition list containing dataframes parameters condition.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/store_hits.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Store Hits — store_hits","text":"list element vector feature indices meet significance threshold.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/truncate_row_names.html","id":null,"dir":"Reference","previous_headings":"","what":"Truncate Row Names — truncate_row_names","title":"Truncate Row Names — truncate_row_names","text":"function truncates row names exceed specified maximum length. row name length exceeds maximum length, appends \" ...\" indicate truncation.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/truncate_row_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Truncate Row Names — truncate_row_names","text":"","code":"truncate_row_names(names, max_length = 40)"},{"path":"https://csbg.github.io/SplineOmics/reference/truncate_row_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Truncate Row Names — truncate_row_names","text":"names character vector row names. max_length integer specifying maximum length row names. Default 40.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/truncate_row_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Truncate Row Names — truncate_row_names","text":"character vector truncated row names.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/update_splineomics.html","id":null,"dir":"Reference","previous_headings":"","what":"Update a SplineOmics object — update_splineomics","title":"Update a SplineOmics object — update_splineomics","text":"Updates SplineOmics object modifying existing fields adding new ones.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/update_splineomics.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Update a SplineOmics object — update_splineomics","text":"","code":"update_splineomics(splineomics, ...)"},{"path":"https://csbg.github.io/SplineOmics/reference/update_splineomics.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Update a SplineOmics object — update_splineomics","text":"splineomics SplineOmics object updated. ... Named arguments new values fields updated added.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/update_splineomics.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Update a SplineOmics object — update_splineomics","text":"updated SplineOmics object.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/within_level.html","id":null,"dir":"Reference","previous_headings":"","what":"Within level analysis — within_level","title":"Within level analysis — within_level","text":"Processes single level within condition, performing limma analysis generating top table results.","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/within_level.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Within level analysis — within_level","text":"","code":"within_level( level, level_index, spline_params, data, rna_seq_data, meta, design, condition, feature_names, padjust_method, mode )"},{"path":"https://csbg.github.io/SplineOmics/reference/within_level.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Within level analysis — within_level","text":"level level within condition process. level_index index level within condition. spline_params list spline parameters analysis. data matrix data values. rna_seq_data object containing preprocessed RNA-seq data, output `limma::voom` similar preprocessing pipeline. meta dataframe containing metadata data. design design formula matrix limma analysis. condition character string specifying condition. feature_names non-empty character vector feature names. padjust_method character string specifying p-adjustment method. mode character string specifying mode ('isolated' 'integrated').","code":""},{"path":"https://csbg.github.io/SplineOmics/reference/within_level.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Within level analysis — within_level","text":"list containing name results top table results.","code":""},{"path":[]}]
diff --git a/docs/sitemap.xml b/docs/sitemap.xml
index 39374eb..4650fc4 100755
--- a/docs/sitemap.xml
+++ b/docs/sitemap.xml
@@ -1,142 +1,142 @@
-/404.html
-/CODE_OF_CONDUCT.html
-/LICENSE-text.html
-/articles/Docker-instructions.html
-/articles/Docker_permission_denied.html
-/articles/design_limma_design_formula.html
-/articles/get-started.html
-/articles/index.html
-/articles/limma_result_categories.html
-/authors.html
-/index.html
-/reference/InputControl.html
-/reference/Level2Functions.html
-/reference/Level3Functions.html
-/reference/Level4Functions.html
-/reference/NumericBlockFinder.html
-/reference/SplineOmics-package.html
-/reference/add_feature_names.html
-/reference/add_plot_to_html.html
-/reference/ask_user.html
-/reference/between_level.html
-/reference/bind_data_with_annotation.html
-/reference/build_cluster_hits_report.html
-/reference/build_create_gsea_report.html
-/reference/build_create_limma_report.html
-/reference/build_explore_data_report.html
-/reference/build_hyperparams_screen_report.html
-/reference/check_between_level_pattern.html
-/reference/check_clustered_hits.html
-/reference/check_databases.html
-/reference/check_genes.html
-/reference/check_null_elements.html
-/reference/check_params.html
-/reference/check_splineomics_elements.html
-/reference/clean_gene_symbols.html
-/reference/cluster_hits.html
-/reference/control_inputs_create_gsea_report.html
-/reference/control_inputs_extract_data.html
-/reference/create_enrichr_zip.html
-/reference/create_gsea_report_level.html
-/reference/create_limma_report.html
-/reference/create_p_value_histogram.html
-/reference/create_progress_bar.html
-/reference/create_spline_params.html
-/reference/create_splineomics.html
-/reference/create_toc.html
-/reference/create_volcano_plot.html
-/reference/dbs_to_term2genes.html
-/reference/define_html_styles.html
-/reference/design2design_matrix.html
-/reference/determine_analysis_mode.html
-/reference/download_enrichr_databases.html
-/reference/encode_df_to_base64.html
-/reference/enrichr_get_genesets.html
-/reference/ensure_clusterProfiler.html
-/reference/explore_data.html
-/reference/extract_data.html
-/reference/flatten_spline_configs.html
-/reference/format_text.html
-/reference/gen_composite_spline_plots.html
-/reference/gen_hitcomp_plots.html
-/reference/generate_and_write_html.html
-/reference/generate_avrg_diff_plots.html
-/reference/generate_explore_plots.html
-/reference/generate_interaction_plots.html
-/reference/generate_report_html.html
-/reference/generate_reports.html
-/reference/generate_reports_meta.html
-/reference/generate_section_content.html
-/reference/generate_time_effect_plots.html
-/reference/get_curve_values.html
-/reference/get_explore_plots_explanations.html
-/reference/get_header_section.html
-/reference/get_level_hit_indices.html
-/reference/get_limma_combos_results.html
-/reference/get_spline_params_info.html
-/reference/hc_add.html
-/reference/hc_barplot.html
-/reference/hc_new.html
-/reference/hc_vennheatmap.html
-/reference/hierarchical_clustering.html
-/reference/huge_table_user_prompter.html
-/reference/index.html
-/reference/is_not_na.html
-/reference/make_clustering_report.html
-/reference/make_correlation_heatmaps.html
-/reference/make_density_plots.html
-/reference/make_enrich_dotplot.html
-/reference/make_mds_plot.html
-/reference/make_pca_plot.html
-/reference/make_violin_box_plots.html
-/reference/manage_gsea_level.html
-/reference/merge_annotation_all_levels_clustering.html
-/reference/merge_top_table_with_annotation.html
-/reference/modify_limma_top_table.html
-/reference/normalize_curves.html
-/reference/open_template.html
-/reference/open_tutorial.html
-/reference/perform_clustering.html
-/reference/plot2base64.html
-/reference/plot_all_mean_splines.html
-/reference/plot_cluster_mean_splines.html
-/reference/plot_composite_splines.html
-/reference/plot_cv.html
-/reference/plot_dendrogram.html
-/reference/plot_first_lag_autocorrelation.html
-/reference/plot_heatmap.html
-/reference/plot_lag1_differences.html
-/reference/plot_limma_combos_results.html
-/reference/plot_mean_correlation_with_time.html
-/reference/plot_single_and_mean_splines.html
-/reference/plot_splines.html
-/reference/prepare_gene_lists_for_enrichr.html
-/reference/prepare_plot_data.html
-/reference/preprocess_rna_seq_data.html
-/reference/print_info_message.html
-/reference/process_combo.html
-/reference/process_combo_pair.html
-/reference/process_config_column.html
-/reference/process_enrichment_results.html
-/reference/process_field.html
-/reference/process_level_cluster.html
-/reference/process_plots.html
-/reference/process_result.html
-/reference/process_top_table.html
-/reference/process_within_level.html
-/reference/read_section_texts.html
-/reference/remove_batch_effect.html
-/reference/remove_batch_effect_cluster_hits.html
-/reference/remove_prefix.html
-/reference/run_gsea.html
-/reference/run_limma_splines.html
-/reference/screen_limma_hyperparams.html
-/reference/set_default_params.html
-/reference/shorten_names.html
-/reference/store_hits.html
-/reference/truncate_row_names.html
-/reference/update_splineomics.html
-/reference/within_level.html
+https://csbg.github.io/SplineOmics/404.html
+https://csbg.github.io/SplineOmics/CODE_OF_CONDUCT.html
+https://csbg.github.io/SplineOmics/LICENSE-text.html
+https://csbg.github.io/SplineOmics/articles/Docker-instructions.html
+https://csbg.github.io/SplineOmics/articles/Docker_permission_denied.html
+https://csbg.github.io/SplineOmics/articles/design_limma_design_formula.html
+https://csbg.github.io/SplineOmics/articles/get-started.html
+https://csbg.github.io/SplineOmics/articles/index.html
+https://csbg.github.io/SplineOmics/articles/limma_result_categories.html
+https://csbg.github.io/SplineOmics/authors.html
+https://csbg.github.io/SplineOmics/index.html
+https://csbg.github.io/SplineOmics/reference/InputControl.html
+https://csbg.github.io/SplineOmics/reference/Level2Functions.html
+https://csbg.github.io/SplineOmics/reference/Level3Functions.html
+https://csbg.github.io/SplineOmics/reference/Level4Functions.html
+https://csbg.github.io/SplineOmics/reference/NumericBlockFinder.html
+https://csbg.github.io/SplineOmics/reference/SplineOmics-package.html
+https://csbg.github.io/SplineOmics/reference/add_feature_names.html
+https://csbg.github.io/SplineOmics/reference/add_plot_to_html.html
+https://csbg.github.io/SplineOmics/reference/ask_user.html
+https://csbg.github.io/SplineOmics/reference/between_level.html
+https://csbg.github.io/SplineOmics/reference/bind_data_with_annotation.html
+https://csbg.github.io/SplineOmics/reference/build_cluster_hits_report.html
+https://csbg.github.io/SplineOmics/reference/build_create_gsea_report.html
+https://csbg.github.io/SplineOmics/reference/build_create_limma_report.html
+https://csbg.github.io/SplineOmics/reference/build_explore_data_report.html
+https://csbg.github.io/SplineOmics/reference/build_hyperparams_screen_report.html
+https://csbg.github.io/SplineOmics/reference/check_between_level_pattern.html
+https://csbg.github.io/SplineOmics/reference/check_clustered_hits.html
+https://csbg.github.io/SplineOmics/reference/check_databases.html
+https://csbg.github.io/SplineOmics/reference/check_genes.html
+https://csbg.github.io/SplineOmics/reference/check_null_elements.html
+https://csbg.github.io/SplineOmics/reference/check_params.html
+https://csbg.github.io/SplineOmics/reference/check_splineomics_elements.html
+https://csbg.github.io/SplineOmics/reference/clean_gene_symbols.html
+https://csbg.github.io/SplineOmics/reference/cluster_hits.html
+https://csbg.github.io/SplineOmics/reference/control_inputs_create_gsea_report.html
+https://csbg.github.io/SplineOmics/reference/control_inputs_extract_data.html
+https://csbg.github.io/SplineOmics/reference/create_enrichr_zip.html
+https://csbg.github.io/SplineOmics/reference/create_gsea_report_level.html
+https://csbg.github.io/SplineOmics/reference/create_limma_report.html
+https://csbg.github.io/SplineOmics/reference/create_p_value_histogram.html
+https://csbg.github.io/SplineOmics/reference/create_progress_bar.html
+https://csbg.github.io/SplineOmics/reference/create_spline_params.html
+https://csbg.github.io/SplineOmics/reference/create_splineomics.html
+https://csbg.github.io/SplineOmics/reference/create_toc.html
+https://csbg.github.io/SplineOmics/reference/create_volcano_plot.html
+https://csbg.github.io/SplineOmics/reference/dbs_to_term2genes.html
+https://csbg.github.io/SplineOmics/reference/define_html_styles.html
+https://csbg.github.io/SplineOmics/reference/design2design_matrix.html
+https://csbg.github.io/SplineOmics/reference/determine_analysis_mode.html
+https://csbg.github.io/SplineOmics/reference/download_enrichr_databases.html
+https://csbg.github.io/SplineOmics/reference/encode_df_to_base64.html
+https://csbg.github.io/SplineOmics/reference/enrichr_get_genesets.html
+https://csbg.github.io/SplineOmics/reference/ensure_clusterProfiler.html
+https://csbg.github.io/SplineOmics/reference/explore_data.html
+https://csbg.github.io/SplineOmics/reference/extract_data.html
+https://csbg.github.io/SplineOmics/reference/flatten_spline_configs.html
+https://csbg.github.io/SplineOmics/reference/format_text.html
+https://csbg.github.io/SplineOmics/reference/gen_composite_spline_plots.html
+https://csbg.github.io/SplineOmics/reference/gen_hitcomp_plots.html
+https://csbg.github.io/SplineOmics/reference/generate_and_write_html.html
+https://csbg.github.io/SplineOmics/reference/generate_avrg_diff_plots.html
+https://csbg.github.io/SplineOmics/reference/generate_explore_plots.html
+https://csbg.github.io/SplineOmics/reference/generate_interaction_plots.html
+https://csbg.github.io/SplineOmics/reference/generate_report_html.html
+https://csbg.github.io/SplineOmics/reference/generate_reports.html
+https://csbg.github.io/SplineOmics/reference/generate_reports_meta.html
+https://csbg.github.io/SplineOmics/reference/generate_section_content.html
+https://csbg.github.io/SplineOmics/reference/generate_time_effect_plots.html
+https://csbg.github.io/SplineOmics/reference/get_curve_values.html
+https://csbg.github.io/SplineOmics/reference/get_explore_plots_explanations.html
+https://csbg.github.io/SplineOmics/reference/get_header_section.html
+https://csbg.github.io/SplineOmics/reference/get_level_hit_indices.html
+https://csbg.github.io/SplineOmics/reference/get_limma_combos_results.html
+https://csbg.github.io/SplineOmics/reference/get_spline_params_info.html
+https://csbg.github.io/SplineOmics/reference/hc_add.html
+https://csbg.github.io/SplineOmics/reference/hc_barplot.html
+https://csbg.github.io/SplineOmics/reference/hc_new.html
+https://csbg.github.io/SplineOmics/reference/hc_vennheatmap.html
+https://csbg.github.io/SplineOmics/reference/hierarchical_clustering.html
+https://csbg.github.io/SplineOmics/reference/huge_table_user_prompter.html
+https://csbg.github.io/SplineOmics/reference/index.html
+https://csbg.github.io/SplineOmics/reference/is_not_na.html
+https://csbg.github.io/SplineOmics/reference/make_clustering_report.html
+https://csbg.github.io/SplineOmics/reference/make_correlation_heatmaps.html
+https://csbg.github.io/SplineOmics/reference/make_density_plots.html
+https://csbg.github.io/SplineOmics/reference/make_enrich_dotplot.html
+https://csbg.github.io/SplineOmics/reference/make_mds_plot.html
+https://csbg.github.io/SplineOmics/reference/make_pca_plot.html
+https://csbg.github.io/SplineOmics/reference/make_violin_box_plots.html
+https://csbg.github.io/SplineOmics/reference/manage_gsea_level.html
+https://csbg.github.io/SplineOmics/reference/merge_annotation_all_levels_clustering.html
+https://csbg.github.io/SplineOmics/reference/merge_top_table_with_annotation.html
+https://csbg.github.io/SplineOmics/reference/modify_limma_top_table.html
+https://csbg.github.io/SplineOmics/reference/normalize_curves.html
+https://csbg.github.io/SplineOmics/reference/open_template.html
+https://csbg.github.io/SplineOmics/reference/open_tutorial.html
+https://csbg.github.io/SplineOmics/reference/perform_clustering.html
+https://csbg.github.io/SplineOmics/reference/plot2base64.html
+https://csbg.github.io/SplineOmics/reference/plot_all_mean_splines.html
+https://csbg.github.io/SplineOmics/reference/plot_cluster_mean_splines.html
+https://csbg.github.io/SplineOmics/reference/plot_composite_splines.html
+https://csbg.github.io/SplineOmics/reference/plot_cv.html
+https://csbg.github.io/SplineOmics/reference/plot_dendrogram.html
+https://csbg.github.io/SplineOmics/reference/plot_first_lag_autocorrelation.html
+https://csbg.github.io/SplineOmics/reference/plot_heatmap.html
+https://csbg.github.io/SplineOmics/reference/plot_lag1_differences.html
+https://csbg.github.io/SplineOmics/reference/plot_limma_combos_results.html
+https://csbg.github.io/SplineOmics/reference/plot_mean_correlation_with_time.html
+https://csbg.github.io/SplineOmics/reference/plot_single_and_mean_splines.html
+https://csbg.github.io/SplineOmics/reference/plot_splines.html
+https://csbg.github.io/SplineOmics/reference/prepare_gene_lists_for_enrichr.html
+https://csbg.github.io/SplineOmics/reference/prepare_plot_data.html
+https://csbg.github.io/SplineOmics/reference/preprocess_rna_seq_data.html
+https://csbg.github.io/SplineOmics/reference/print_info_message.html
+https://csbg.github.io/SplineOmics/reference/process_combo.html
+https://csbg.github.io/SplineOmics/reference/process_combo_pair.html
+https://csbg.github.io/SplineOmics/reference/process_config_column.html
+https://csbg.github.io/SplineOmics/reference/process_enrichment_results.html
+https://csbg.github.io/SplineOmics/reference/process_field.html
+https://csbg.github.io/SplineOmics/reference/process_level_cluster.html
+https://csbg.github.io/SplineOmics/reference/process_plots.html
+https://csbg.github.io/SplineOmics/reference/process_result.html
+https://csbg.github.io/SplineOmics/reference/process_top_table.html
+https://csbg.github.io/SplineOmics/reference/process_within_level.html
+https://csbg.github.io/SplineOmics/reference/read_section_texts.html
+https://csbg.github.io/SplineOmics/reference/remove_batch_effect.html
+https://csbg.github.io/SplineOmics/reference/remove_batch_effect_cluster_hits.html
+https://csbg.github.io/SplineOmics/reference/remove_prefix.html
+https://csbg.github.io/SplineOmics/reference/run_gsea.html
+https://csbg.github.io/SplineOmics/reference/run_limma_splines.html
+https://csbg.github.io/SplineOmics/reference/screen_limma_hyperparams.html
+https://csbg.github.io/SplineOmics/reference/set_default_params.html
+https://csbg.github.io/SplineOmics/reference/shorten_names.html
+https://csbg.github.io/SplineOmics/reference/store_hits.html
+https://csbg.github.io/SplineOmics/reference/truncate_row_names.html
+https://csbg.github.io/SplineOmics/reference/update_splineomics.html
+https://csbg.github.io/SplineOmics/reference/within_level.html
diff --git a/man/SplineOmics-package.Rd b/man/SplineOmics-package.Rd
index a95c662..ea08caf 100755
--- a/man/SplineOmics-package.Rd
+++ b/man/SplineOmics-package.Rd
@@ -118,6 +118,13 @@ These dependencies are only necessary for some functions:
None
}
+\seealso{
+Useful links:
+\itemize{
+ \item \url{https://csbg.github.io/SplineOmics}
+}
+
+}
\keyword{GSEA,}
\keyword{HTML}
\keyword{clustering,}
diff --git a/vignettes/get-started.Rmd b/vignettes/get-started.Rmd
index e9d7f0e..a3fa589 100755
--- a/vignettes/get-started.Rmd
+++ b/vignettes/get-started.Rmd
@@ -1,7 +1,7 @@
---
title: "get-started"
author: "Thomas Rauter"
-date: "10 June, 2024"
+date: "20 September, 2024"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{get-started}
@@ -56,8 +56,8 @@ The main goals of this analysis are:
### Note
-The documentation of all the **SplineOmics** package functions can be viewed
-[here](https://csbg.github.io/SplineOmics/reference)
+The documentation of all the **SplineOmics** package functions can be
+viewed [here](https://csbg.github.io/SplineOmics/reference)
# Load the packages
@@ -70,11 +70,12 @@ library(dplyr) # For data manipulation
# Load the files
-In this example, the proteomics_data.rds file contains the numeric values (the
-intensities) and also the feature descriptions, such as gene and protein
-name (= annotation part). Usually, you would load the data from for example an
-Excel file, but the .rds file is more compressed, which is the reason this
-format was chosen here to limit the size of the SplineOmics package.
+In this example, the proteomics_data.rds file contains the numeric
+values (the intensities) and also the feature descriptions, such as gene
+and protein name (= annotation part). Usually, you would load the data
+from for example an Excel file, but the .rds file is more compressed,
+which is the reason this format was chosen here to limit the size of the
+SplineOmics package.
The file meta.xlsx contains the meta information, which are the
descriptions of the columns of the numeric values of data.
@@ -83,15 +84,16 @@ descriptions of the columns of the numeric values of data.
present on your system).
Please note that this dataset is an actual experimental dataset, but the
-annotation information, such as gene names, has been removed since it was
-not yet published at the time of making the SplineOmics package public. Instead,
-the dataset includes randomly generated gene
-symbols and gene names corresponding to Cricetulus griseus (Chinese
-Hamster) for each row. This is intended to demonstrate the functionality
-of the package.
+annotation information, such as gene names, has been removed since it
+was not yet published at the time of making the SplineOmics package
+public. Instead, the dataset includes randomly generated gene symbols
+and gene names corresponding to Cricetulus griseus (Chinese Hamster) for
+each row. This is intended to demonstrate the functionality of the
+package.
-The left part of data contains the numeric values, and the right part the
-annotation info, which can be copied in a separate dataframe, as shown below.
+The left part of data contains the numeric values, and the right part
+the annotation info, which can be copied in a separate dataframe, as
+shown below.
```{r load the files}
@@ -124,11 +126,11 @@ print(annotation)
## Bring the Inputs into the Standardized Format
Since `data` is not in the format required by the **SplineOmics**
-package, it needs some processing. The SplineOmics package requires data to be
-a numeric matrix, so no element is allowed to be anything else than a number.
-This can be done with a few commands
-in R, but if your file has a specific structure, the function
-`extract_data()` can handle this automatically.
+package, it needs some processing. The SplineOmics package requires data
+to be a numeric matrix, so no element is allowed to be anything else
+than a number. This can be done with a few commands in R, but if your
+file has a specific structure, the function `extract_data()` can handle
+this automatically.
### File Structure Requirements
@@ -142,7 +144,8 @@ If your file looks like the one used here, where:
Then, `extract_data()` can:
-- **Identify the data matrix field** and return it as a numeric matrix.
+- **Identify the data matrix field** and return it as a numeric
+ matrix.
- **Create column headers** from the information written in the cells
above the respective columns of the data matrix field.
- **Assign rowheaders**:
@@ -172,7 +175,8 @@ data <- SplineOmics::extract_data(
# Perform EDA (exploratory data analysis)
-Now that we have the data in the required format (numeric matrix) we can go on.
+Now that we have the data in the required format (numeric matrix) we can
+go on.
The first step in analyzing data is typically **Exploratory Data
Analysis (EDA)**. EDA involves summarizing the main characteristics of
@@ -188,8 +192,8 @@ Some common types of EDA plots include:
- **Correlation heatmaps**
Again, you can generate those plots yourself with a few lines of R code.
-However, if you prefer, for convenience, the `explore_data()` function can
-handle this for you.
+However, if you prefer, for convenience, the `explore_data()` function
+can handle this for you.
### Using `explore_data()` for EDA
@@ -201,7 +205,8 @@ perform EDA. This function requires the following arguments:
- **condition**: The name of the column in the metadata that contains
the levels of the experiment (e.g., "Exponential" and "Stationary").
- **report_info**: A list that contains general information about the
- analysis, such as the name of the analyst and the datatype (e.g. proteomics)
+ analysis, such as the name of the analyst and the datatype (e.g.
+ proteomics)
### Optional Arguments
@@ -229,8 +234,8 @@ optional arguments:
- The function also **returns all plots** generated during the
analysis, so that you can modify them according to your own needs.
- If you do not want a report to be generated, you can set the
- `report` argument to `FALSE` (when you for example just want the figures
- in the R environment)
+ `report` argument to `FALSE` (when you for example just want the
+ figures in the R environment)
```{r Load EDA arguments, eval = TRUE}
# Those fields are mandatory, because we believe that when such a report is
@@ -252,14 +257,14 @@ report_dir <- here::here(
## SplineOmics Object
-In the SplineOmics package, multiple functions take the same arguments as input.
-To make this easier and to avoid errors, we decided that those arguments are not
-provided individually to the functions, but are all stored in an R6 object
-(which is of type 'SplineOmics') and then this object is passed to the
-functions. Additionally, some functions generate intermediate output, which is
-just necessary for the next function in the workflow, which is then also just
-passed along by updating the SplineOmics object. But you don't have to worry
-about this.
+In the SplineOmics package, multiple functions take the same arguments
+as input. To make this easier and to avoid errors, we decided that those
+arguments are not provided individually to the functions, but are all
+stored in an R6 object (which is of type 'SplineOmics') and then this
+object is passed to the functions. Additionally, some functions generate
+intermediate output, which is just necessary for the next function in
+the workflow, which is then also just passed along by updating the
+SplineOmics object. But you don't have to worry about this.
### Functionality
@@ -269,15 +274,15 @@ from the object and potentially adds new data or results back into it.
### Documentation
-The documentation of the function that creates the SplineOmics object can be
-found [here](https://csbg.github.io/SplineOmics/reference/create_splineomics.html)
-and the documentation of the function that updates it
+The documentation of the function that creates the SplineOmics object
+can be found
+[here](https://csbg.github.io/SplineOmics/reference/create_splineomics.html)
+and the documentation of the function that updates it
[[here](https://csbg.github.io/SplineOmics/reference/update_splineomics.html)
-The documentation for each function that takes the SplineOmics object as input
-specifies which arguments must be
-present in the SplineOmics object when it is passed to the respective
-function.
+The documentation for each function that takes the SplineOmics object as
+input specifies which arguments must be present in the SplineOmics
+object when it is passed to the respective function.
## Required Arguments `create_splineomics()`
@@ -288,8 +293,8 @@ function.
## Optional Arguments `create_splineomics()`
-- **rna_seq_data**: An object containing the preprocessed RNA-seq data,
- such as the output from `limma::voom` function.
+- **rna_seq_data**: An object containing the preprocessed RNA-seq
+ data, such as the output from `limma::voom` function.
- **annotation**: A dataframe with the feature descriptions of data.
- **report_info**: A list containing general information about the
analysis.
@@ -310,8 +315,8 @@ splineomics <- SplineOmics::create_splineomics(
)
```
-Now that we have the SplineOmics object defined, we can perform our exploratory
-data analysis.
+Now that we have the SplineOmics object defined, we can perform our
+exploratory data analysis.
```{r Run EDA function, eval = FALSE}
plots <- SplineOmics::explore_data(
@@ -352,12 +357,12 @@ the best "hyperparameters". In this context, hyperparameters include:
### Challenge of Hyperparameter Selection
Rationally determining the best combination of hyperparameters can be
-very challenging. By rationally, I mean deciding upon the final hyperparameters
-without ever testing any, just by scientific reasoning. It is much easier just
-testing a few and seeing how they actually behave. However, manually selecting
-combinations can be tedious, and you have to work very systematically, which
-can be challenging. To solve this problem, the `screen_limma_hyperparams()`
-function was written.
+very challenging. By rationally, I mean deciding upon the final
+hyperparameters without ever testing any, just by scientific reasoning.
+It is much easier just testing a few and seeing how they actually
+behave. However, manually selecting combinations can be tedious, and you
+have to work very systematically, which can be challenging. To solve
+this problem, the `screen_limma_hyperparams()` function was written.
### Using `screen_limma_hyperparams()`
@@ -372,8 +377,8 @@ testing different combinations of hyperparameters. Here's how it works:
### Inner vs. Outer Hyperparameters
-Semi combinatorial here means that not every possible combination is generated.
-Instead, there are **inner** and **outer** hyperparameters:
+Semi combinatorial here means that not every possible combination is
+generated. Instead, there are **inner** and **outer** hyperparameters:
- **Outer hyperparameters**: These include things like **different
versions of the dataset** (e.g., full dataset vs. dataset with
@@ -385,29 +390,32 @@ Instead, there are **inner** and **outer** hyperparameters:
- For each version of the data (outer hyperparameter), all
combinations of inner hyperparameters are tested.
-This approach is neccessary, because otherwise the amount of combos would
-explode.
+This approach is neccessary, because otherwise the amount of combos
+would explode.
### Example
For example, if you have two versions of a dataset (one full dataset,
and one with some outliers removed), these versions are considered outer
-hyperparameters. Additionaly, lets say, you want to test two different limma
-design formulas, formula 1 and 2. The function will test out all combinations
-of those outer hyperparameters and compare them with each other, which results
-in a total of 6 combinations here:
+hyperparameters. Additionaly, lets say, you want to test two different
+limma design formulas, formula 1 and 2. The function will test out all
+combinations of those outer hyperparameters and compare them with each
+other, which results in a total of 6 combinations here:
-- **Full Dataset Formula 1** vs **Full Dataset Formula 2**
-- **Full Dataset Formula 1** vs **Outliers Removed Dataset Formula 1**
-- **Full Dataset Formula 1** vs **Outliers Removed Dataset Formula 2**
+- **Full Dataset Formula 1** vs **Full Dataset Formula 2**
-- **Full Dataset Formula 2** vs **Outliers Removed Dataset Formula 1**
-- **Full Dataset Formula 2** vs **Outliers Removed Dataset Formula 2**
+- **Full Dataset Formula 1** vs **Outliers Removed Dataset Formula 1**
-- **Outliers Removed Dataset Formula 1** vs **Outliers Removed Dataset Formula 2**
+- **Full Dataset Formula 1** vs **Outliers Removed Dataset Formula 2**
-Let's say you specified the following inner
-hyperparameters:
+- **Full Dataset Formula 2** vs **Outliers Removed Dataset Formula 1**
+
+- **Full Dataset Formula 2** vs **Outliers Removed Dataset Formula 2**
+
+- **Outliers Removed Dataset Formula 1** vs **Outliers Removed Dataset
+ Formula 2**
+
+Let's say you specified the following inner hyperparameters:
- **Spline parameters**: Natural cubic splines with a degree of
freedom of either 2 or 3.
@@ -417,19 +425,26 @@ The function will generate and test all combinations of the spline
parameters and p-value thresholds for all 4 combos:
Combo 1:
+
- **DoF = 2, threshold = 0.05**
+
- **DoF = 3, threshold = 0.05**
+
- **DoF = 2, threshold = 0.1**
+
- **DoF = 3, threshold = 0.1**
-Combo 2:
+Combo 2:
+
- **DoF = 2, threshold = 0.05**
+
- **DoF = 3, threshold = 0.05**
+
- **DoF = 2, threshold = 0.1**
+
- **DoF = 3, threshold = 0.1**
-Combo 3:
-...
+Combo 3: ...
This allows you to systematically explore different combinations and
select the optimal hyperparameters for your analysis.
@@ -503,8 +518,8 @@ spline_test_configs <- data.frame(
print(spline_test_configs)
```
-Now that we specified all the values for each hyperparameter that we want to
-test, we can run the `screen_limma_hyperparams()` function.
+Now that we specified all the values for each hyperparameter that we
+want to test, we can run the `screen_limma_hyperparams()` function.
```{r Perform hyperparameter-screening, eval = FALSE}
SplineOmics::screen_limma_hyperparams(
@@ -520,15 +535,16 @@ SplineOmics::screen_limma_hyperparams(
```
-As mentioned, this function generates a report for each comparison of the outer
-hyperparameters, which are too many to show here. You can view an example report
+As mentioned, this function generates a report for each comparison of
+the outer hyperparameters, which are too many to show here. You can view
+an example report
[here](https://csbg.github.io/SplineOmics_html_reports/Data_1_Design_1_vs_Data_1_Design_2_PTX_19_09_2024-13_44_10.html)
This report contains the results for the comparison of the "outer"
-hyperparameters data 1 and design (formula) 1 compared against data 1 and design
-2. For both of those, all combinations of the "inner" hyperparameters
-are generated (every possible combination of all specified adj. p-value
-thresholds and spline configs).
+hyperparameters data 1 and design (formula) 1 compared against data 1
+and design 2. For both of those, all combinations of the "inner"
+hyperparameters are generated (every possible combination of all
+specified adj. p-value thresholds and spline configs).
The encoding used in the reports and the titles is
[here](https://csbg.github.io/SplineOmics_html_reports/hyperparams_screen_meta_table_19_09_2024-13_44_10.html)
@@ -559,7 +575,8 @@ splineomics <- SplineOmics::update_splineomics(
)
```
-Run the `run_limma_splines()` function with the updated SplineOmics object:
+Run the `run_limma_splines()` function with the updated SplineOmics
+object:
```{r limma spline analysis, eval = TRUE}
splineomics <- SplineOmics::run_limma_splines(
@@ -611,8 +628,8 @@ function
After we obtained the limma spline results, we can cluster the hits
based on their temporal pattern (their spline shape). We define what a
-hit is by setting an adj. p-value threshold for every level. Hits are features
-(e.g. proteins) that have an adj. p-value below the threshold.
+hit is by setting an adj. p-value threshold for every level. Hits are
+features (e.g. proteins) that have an adj. p-value below the threshold.
Hierarchical clustering is used to place every hit in one of as many
clusters as we have specified for that specific level.
@@ -665,8 +682,8 @@ You can view the generated analysis report of the cluster_hits function
# Perform gene set enrichment analysis (GSEA)
-Usually, the final step in such a bioinformatics analysis is GSEA. To each
-clustered hit, the respective gene can be assigned and GSEA
+Usually, the final step in such a bioinformatics analysis is GSEA. To
+each clustered hit, the respective gene can be assigned and GSEA
performed. For this, the Enrichr databases of choice have to be
downloaded:
@@ -726,8 +743,8 @@ report_dir <- here::here(
)
```
-The function below runs the clusterProfiler for all clusters and all levels,
-and generates the HTML report:
+The function below runs the clusterProfiler for all clusters and all
+levels, and generates the HTML report:
```{r run GSEA, eval = FALSE}
result <- SplineOmics::run_gsea(
@@ -765,22 +782,23 @@ results, that is stated with a red message.
# Conclusion
-This example showed most functionalities of the SplineOmics package. You can
-also run other datatypes with it, including timeseries RNA-seq and glycan data
-(for those, refer to the documentation in the README file on the GitHub page
-under Usage/RNA-seq and Glycan Data).
-
-To get an interactive version of this
-example, download the SplineOmics package and run the function `open_tutorial()`
-which opens an R Markdown file, where you can run the different code blocks and
-if your are working in R Studio (which is recommendet) you can easily check out
-the values of the individual variables and generate the output reports yourself.
-
-When you run the function `open_template()` you get a minimal R Markdown file,
-where the code is written so that you can use it as a skeleton to plug in your
-own data and run it.
-
-We hope that the SplineOmics package makes your scientific data analysis easier.
-If you face any problems (bugs in the code) or are not satisfied with the
-documentation, open an issue on GitHub or check out the other options under the
-Feedback section of the README on GitHub. Thank you!
\ No newline at end of file
+This example showed most functionalities of the SplineOmics package. You
+can also run other datatypes with it, including timeseries RNA-seq and
+glycan data (for those, refer to the documentation in the README file on
+the GitHub page under Usage/RNA-seq and Glycan Data).
+
+To get an interactive version of this example, download the SplineOmics
+package and run the function `open_tutorial()` which opens an R Markdown
+file, where you can run the different code blocks and if your are
+working in R Studio (which is recommendet) you can easily check out the
+values of the individual variables and generate the output reports
+yourself.
+
+When you run the function `open_template()` you get a minimal R Markdown
+file, where the code is written so that you can use it as a skeleton to
+plug in your own data and run it.
+
+We hope that the SplineOmics package makes your scientific data analysis
+easier. If you face any problems (bugs in the code) or are not satisfied
+with the documentation, open an issue on GitHub or check out the other
+options under the Feedback section of the README on GitHub. Thank you!