forked from cryply/crp_yespower_1_0_python3
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathyespower-ref.c
579 lines (499 loc) · 15.5 KB
/
yespower-ref.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/*-
* Copyright 2009 Colin Percival
* Copyright 2013-2018 Alexander Peslyak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*
* This is a proof-of-work focused fork of yescrypt, including reference and
* cut-down implementation of the obsolete yescrypt 0.5 (based off its first
* submission to PHC back in 2014) and a new proof-of-work specific variation
* known as yespower 0.9. The former is intended as an upgrade for
* cryptocurrencies that already use yescrypt 0.5 and the latter may be used
* as a further upgrade (hard fork) by those and other cryptocurrencies. The
* version of algorithm to use is requested through parameters, allowing for
* both algorithms to co-exist in client and miner implementations (such as in
* preparation for a hard-fork).
*
* This is the reference implementation. Its purpose is to provide a simple
* human- and machine-readable specification that implementations intended
* for actual use should be tested against. It is deliberately mostly not
* optimized, and it is not meant to be used in production. Instead, use
* yespower-opt.c.
*/
#warning "This reference implementation is deliberately mostly not optimized. Use yespower-opt.c instead unless you're testing (against) the reference implementation on purpose."
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sha256.h"
#include "sysendian.h"
#include "yespower.h"
static void blkcpy(uint32_t *dst, const uint32_t *src, size_t count)
{
do {
*dst++ = *src++;
} while (--count);
}
static void blkxor(uint32_t *dst, const uint32_t *src, size_t count)
{
do {
*dst++ ^= *src++;
} while (--count);
}
/**
* salsa20(B):
* Apply the Salsa20 core to the provided block.
*/
static void salsa20(uint32_t B[16], uint32_t rounds)
{
uint32_t x[16];
size_t i;
/* SIMD unshuffle */
for (i = 0; i < 16; i++)
x[i * 5 % 16] = B[i];
for (i = 0; i < rounds; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns */
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
/* Operate on rows */
x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
#undef R
}
/* SIMD shuffle */
for (i = 0; i < 16; i++)
B[i] += x[i * 5 % 16];
}
/**
* blockmix_salsa(B):
* Compute B = BlockMix_{salsa20, 1}(B). The input B must be 128 bytes in
* length.
*/
static void blockmix_salsa(uint32_t *B, uint32_t rounds)
{
uint32_t X[16];
size_t i;
/* 1: X <-- B_{2r - 1} */
blkcpy(X, &B[16], 16);
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < 2; i++) {
/* 3: X <-- H(X xor B_i) */
blkxor(X, &B[i * 16], 16);
salsa20(X, rounds);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy(&B[i * 16], X, 16);
}
}
/*
* These are tunable, but they must meet certain constraints and are part of
* what defines a yespower version.
*/
#define PWXsimple 2
#define PWXgather 4
/* Version 0.5 */
#define PWXrounds_0_5 6
#define Swidth_0_5 8
/* Version 0.9 */
#define PWXrounds_0_9 3
#define Swidth_0_9 11
/* Derived values. Not tunable on their own. */
#define PWXbytes (PWXgather * PWXsimple * 8)
#define PWXwords (PWXbytes / sizeof(uint32_t))
#define rmin ((PWXbytes + 127) / 128)
/* Runtime derived values. Not tunable on their own. */
#define Swidth_to_Sbytes1(Swidth) ((1 << Swidth) * PWXsimple * 8)
#define Swidth_to_Smask(Swidth) (((1 << Swidth) - 1) * PWXsimple * 8)
typedef struct {
yespower_version_t version;
uint32_t salsa20_rounds;
uint32_t PWXrounds, Swidth, Sbytes, Smask;
uint32_t *S;
uint32_t (*S0)[2], (*S1)[2], (*S2)[2];
size_t w;
} pwxform_ctx_t;
/**
* pwxform(B):
* Transform the provided block using the provided S-boxes.
*/
static void pwxform(uint32_t *B, pwxform_ctx_t *ctx)
{
uint32_t (*X)[PWXsimple][2] = (uint32_t (*)[PWXsimple][2])B;
uint32_t (*S0)[2] = ctx->S0, (*S1)[2] = ctx->S1, (*S2)[2] = ctx->S2;
uint32_t Smask = ctx->Smask;
size_t w = ctx->w;
size_t i, j, k;
/* 1: for i = 0 to PWXrounds - 1 do */
for (i = 0; i < ctx->PWXrounds; i++) {
/* 2: for j = 0 to PWXgather - 1 do */
for (j = 0; j < PWXgather; j++) {
uint32_t xl = X[j][0][0];
uint32_t xh = X[j][0][1];
uint32_t (*p0)[2], (*p1)[2];
/* 3: p0 <-- (lo(B_{j,0}) & Smask) / (PWXsimple * 8) */
p0 = S0 + (xl & Smask) / sizeof(*S0);
/* 4: p1 <-- (hi(B_{j,0}) & Smask) / (PWXsimple * 8) */
p1 = S1 + (xh & Smask) / sizeof(*S1);
/* 5: for k = 0 to PWXsimple - 1 do */
for (k = 0; k < PWXsimple; k++) {
uint64_t x, s0, s1;
/* 6: B_{j,k} <-- (hi(B_{j,k}) * lo(B_{j,k}) + S0_{p0,k}) xor S1_{p1,k} */
s0 = ((uint64_t)p0[k][1] << 32) + p0[k][0];
s1 = ((uint64_t)p1[k][1] << 32) + p1[k][0];
xl = X[j][k][0];
xh = X[j][k][1];
x = (uint64_t)xh * xl;
x += s0;
x ^= s1;
X[j][k][0] = x;
X[j][k][1] = x >> 32;
}
if (ctx->version != YESPOWER_0_5 &&
(i == 0 || j < PWXgather / 2)) {
if (j & 1) {
for (k = 0; k < PWXsimple; k++) {
S1[w][0] = X[j][k][0];
S1[w][1] = X[j][k][1];
w++;
}
} else {
for (k = 0; k < PWXsimple; k++) {
S0[w + k][0] = X[j][k][0];
S0[w + k][1] = X[j][k][1];
}
}
}
}
}
if (ctx->version != YESPOWER_0_5) {
/* 14: (S0, S1, S2) <-- (S2, S0, S1) */
ctx->S0 = S2;
ctx->S1 = S0;
ctx->S2 = S1;
/* 15: w <-- w mod 2^Swidth */
ctx->w = w & ((1 << ctx->Swidth) * PWXsimple - 1);
}
}
/**
* blockmix_pwxform(B, ctx, r):
* Compute B = BlockMix_pwxform{salsa20, ctx, r}(B). The input B must be
* 128r bytes in length.
*/
static void blockmix_pwxform(uint32_t *B, pwxform_ctx_t *ctx, size_t r)
{
uint32_t X[PWXwords];
size_t r1, i;
/* Convert 128-byte blocks to PWXbytes blocks */
/* 1: r_1 <-- 128r / PWXbytes */
r1 = 128 * r / PWXbytes;
/* 2: X <-- B'_{r_1 - 1} */
blkcpy(X, &B[(r1 - 1) * PWXwords], PWXwords);
/* 3: for i = 0 to r_1 - 1 do */
for (i = 0; i < r1; i++) {
/* 4: if r_1 > 1 */
if (r1 > 1) {
/* 5: X <-- X xor B'_i */
blkxor(X, &B[i * PWXwords], PWXwords);
}
/* 7: X <-- pwxform(X) */
pwxform(X, ctx);
/* 8: B'_i <-- X */
blkcpy(&B[i * PWXwords], X, PWXwords);
}
/* 10: i <-- floor((r_1 - 1) * PWXbytes / 64) */
i = (r1 - 1) * PWXbytes / 64;
/* 11: B_i <-- H(B_i) */
salsa20(&B[i * 16], ctx->salsa20_rounds);
#if 1 /* No-op with our current pwxform settings, but do it to make sure */
/* 12: for i = i + 1 to 2r - 1 do */
for (i++; i < 2 * r; i++) {
/* 13: B_i <-- H(B_i xor B_{i-1}) */
blkxor(&B[i * 16], &B[(i - 1) * 16], 16);
salsa20(&B[i * 16], ctx->salsa20_rounds);
}
#endif
}
/**
* integerify(B, r):
* Return the result of parsing B_{2r-1} as a little-endian integer.
*/
static uint32_t integerify(const uint32_t *B, size_t r)
{
/*
* Our 32-bit words are in host byte order. Also, they are SIMD-shuffled, but
* we only care about the least significant 32 bits anyway.
*/
const uint32_t *X = &B[(2 * r - 1) * 16];
return X[0];
}
/**
* p2floor(x):
* Largest power of 2 not greater than argument.
*/
static uint32_t p2floor(uint32_t x)
{
uint32_t y;
while ((y = x & (x - 1)))
x = y;
return x;
}
/**
* wrap(x, i):
* Wrap x to the range 0 to i-1.
*/
static uint32_t wrap(uint32_t x, uint32_t i)
{
uint32_t n = p2floor(i);
return (x & (n - 1)) + (i - n);
}
/**
* smix1(B, r, N, V, X, ctx):
* Compute first loop of B = SMix_r(B, N). The input B must be 128r bytes in
* length; the temporary storage V must be 128rN bytes in length; the temporary
* storage X must be 128r bytes in length.
*/
static void smix1(uint32_t *B, size_t r, uint32_t N,
uint32_t *V, uint32_t *X, pwxform_ctx_t *ctx)
{
size_t s = 32 * r;
uint32_t i, j;
size_t k;
/* 1: X <-- B */
for (k = 0; k < 2 * r; k++)
for (i = 0; i < 16; i++)
X[k * 16 + i] = le32dec(&B[k * 16 + (i * 5 % 16)]);
if (ctx->version != YESPOWER_0_5) {
for (k = 1; k < r; k++) {
blkcpy(&X[k * 32], &X[(k - 1) * 32], 32);
blockmix_pwxform(&X[k * 32], ctx, 1);
}
}
/* 2: for i = 0 to N - 1 do */
for (i = 0; i < N; i++) {
/* 3: V_i <-- X */
blkcpy(&V[i * s], X, s);
if (i > 1) {
/* j <-- Wrap(Integerify(X), i) */
j = wrap(integerify(X, r), i);
/* X <-- X xor V_j */
blkxor(X, &V[j * s], s);
}
/* 4: X <-- H(X) */
if (V != ctx->S)
blockmix_pwxform(X, ctx, r);
else
blockmix_salsa(X, ctx->salsa20_rounds);
}
/* B' <-- X */
for (k = 0; k < 2 * r; k++)
for (i = 0; i < 16; i++)
le32enc(&B[k * 16 + (i * 5 % 16)], X[k * 16 + i]);
}
/**
* smix2(B, r, N, Nloop, V, X, ctx):
* Compute second loop of B = SMix_r(B, N). The input B must be 128r bytes in
* length; the temporary storage V must be 128rN bytes in length; the temporary
* storage X must be 128r bytes in length. The value N must be a power of 2
* greater than 1.
*/
static void smix2(uint32_t *B, size_t r, uint32_t N, uint32_t Nloop,
uint32_t *V, uint32_t *X, pwxform_ctx_t *ctx)
{
size_t s = 32 * r;
uint32_t i, j;
size_t k;
/* X <-- B */
for (k = 0; k < 2 * r; k++)
for (i = 0; i < 16; i++)
X[k * 16 + i] = le32dec(&B[k * 16 + (i * 5 % 16)]);
/* 6: for i = 0 to N - 1 do */
for (i = 0; i < Nloop; i++) {
/* 7: j <-- Integerify(X) mod N */
j = integerify(X, r) & (N - 1);
/* 8.1: X <-- X xor V_j */
blkxor(X, &V[j * s], s);
/* V_j <-- X */
if (Nloop != 2)
blkcpy(&V[j * s], X, s);
/* 8.2: X <-- H(X) */
blockmix_pwxform(X, ctx, r);
}
/* 10: B' <-- X */
for (k = 0; k < 2 * r; k++)
for (i = 0; i < 16; i++)
le32enc(&B[k * 16 + (i * 5 % 16)], X[k * 16 + i]);
}
/**
* smix(B, r, N, p, t, V, X, ctx):
* Compute B = SMix_r(B, N). The input B must be 128rp bytes in length; the
* temporary storage V must be 128rN bytes in length; the temporary storage
* X must be 128r bytes in length. The value N must be a power of 2 and at
* least 16.
*/
static void smix(uint32_t *B, size_t r, uint32_t N,
uint32_t *V, uint32_t *X, pwxform_ctx_t *ctx)
{
uint32_t Nloop_all = (N + 2) / 3; /* 1/3, round up */
uint32_t Nloop_rw = Nloop_all;
Nloop_all++; Nloop_all &= ~(uint32_t)1; /* round up to even */
if (ctx->version == YESPOWER_0_5) {
Nloop_rw &= ~(uint32_t)1; /* round down to even */
} else {
Nloop_rw++; Nloop_rw &= ~(uint32_t)1; /* round up to even */
}
smix1(B, 1, ctx->Sbytes / 128, ctx->S, X, ctx);
smix1(B, r, N, V, X, ctx);
smix2(B, r, N, Nloop_rw /* must be > 2 */, V, X, ctx);
smix2(B, r, N, Nloop_all - Nloop_rw /* 0 or 2 */, V, X, ctx);
}
/**
* yespower(local, src, srclen, params, dst):
* Compute yespower(src[0 .. srclen - 1], N, r), to be checked for "< target".
*
* Return 0 on success; or -1 on error.
*/
int yespower(yespower_local_t *local,
const uint8_t *src, size_t srclen,
const yespower_params_t *params, yespower_binary_t *dst)
{
yespower_version_t version = params->version;
uint32_t N = params->N;
uint32_t r = params->r;
const uint8_t *pers = params->pers;
size_t perslen = params->perslen;
int retval = -1;
size_t B_size, V_size;
uint32_t *B, *V, *X, *S;
pwxform_ctx_t ctx;
uint32_t sha256[8];
/* Sanity-check parameters */
if ((version != YESPOWER_0_5 && version != YESPOWER_0_9) ||
N < 1024 || N > 512 * 1024 || r < 8 || r > 32 ||
(N & (N - 1)) != 0 || r < rmin ||
(!pers && perslen)) {
errno = EINVAL;
return -1;
}
/* Allocate memory */
B_size = (size_t)128 * r;
V_size = B_size * N;
if ((V = malloc(V_size)) == NULL)
return -1;
if ((B = malloc(B_size)) == NULL)
goto free_V;
if ((X = malloc(B_size)) == NULL)
goto free_B;
ctx.version = version;
if (version == YESPOWER_0_5) {
ctx.salsa20_rounds = 8;
ctx.PWXrounds = PWXrounds_0_5;
ctx.Swidth = Swidth_0_5;
ctx.Sbytes = 2 * Swidth_to_Sbytes1(ctx.Swidth);
} else {
ctx.salsa20_rounds = 2;
ctx.PWXrounds = PWXrounds_0_9;
ctx.Swidth = Swidth_0_9;
ctx.Sbytes = 3 * Swidth_to_Sbytes1(ctx.Swidth);
}
if ((S = malloc(ctx.Sbytes)) == NULL)
goto free_X;
ctx.S = S;
ctx.S0 = (uint32_t (*)[2])S;
ctx.S1 = ctx.S0 + (1 << ctx.Swidth) * PWXsimple;
ctx.S2 = ctx.S1 + (1 << ctx.Swidth) * PWXsimple;
ctx.Smask = Swidth_to_Smask(ctx.Swidth);
ctx.w = 0;
SHA256_Buf(src, srclen, (uint8_t *)sha256);
if (version != YESPOWER_0_5) {
if (pers) {
src = pers;
srclen = perslen;
} else {
srclen = 0;
}
}
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256((uint8_t *)sha256, sizeof(sha256),
src, srclen, 1, (uint8_t *)B, B_size);
blkcpy(sha256, B, sizeof(sha256) / sizeof(sha256[0]));
/* 3: B_i <-- MF(B_i, N) */
smix(B, r, N, V, X, &ctx);
if (version == YESPOWER_0_5) {
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256((uint8_t *)sha256, sizeof(sha256),
(uint8_t *)B, B_size, 1, (uint8_t *)dst, sizeof(*dst));
if (pers) {
HMAC_SHA256_Buf(dst, sizeof(*dst), pers, perslen,
(uint8_t *)sha256);
SHA256_Buf(sha256, sizeof(sha256), (uint8_t *)dst);
}
} else {
HMAC_SHA256_Buf((uint8_t *)B + B_size - 64, 64,
sha256, sizeof(sha256), (uint8_t *)dst);
}
/* Success! */
retval = 0;
/* Free memory */
free(S);
free_X:
free(X);
free_B:
free(B);
free_V:
free(V);
return retval;
}
int yespower_tls(const uint8_t *src, size_t srclen,
const yespower_params_t *params, yespower_binary_t *dst)
{
/* The reference implementation doesn't use thread-local storage */
return yespower(NULL, src, srclen, params, dst);
}
int yespower_init_local(yespower_local_t *local)
{
/* The reference implementation doesn't use the local structure */
local->base = local->aligned = NULL;
local->base_size = local->aligned_size = 0;
return 0;
}
int yespower_free_local(yespower_local_t *local)
{
/* The reference implementation frees its memory in yespower() */
return 0;
}