-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathaf.py
118 lines (111 loc) · 8.47 KB
/
af.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import django
from django.db.models import Sum
from datetime import datetime, timedelta
from os import environ
from pandas import DataFrame, concat
environ['DJANGO_SETTINGS_MODULE'] = 'lndg.settings'
django.setup()
from gui.models import Forwards, Channels, LocalSettings, FailedHTLCs
def main(channels):
channels_df = DataFrame.from_records(channels.values())
filter_1day = datetime.now() - timedelta(days=1)
filter_7day = datetime.now() - timedelta(days=7)
if channels_df.shape[0] > 0:
if LocalSettings.objects.filter(key='AF-MaxRate').exists():
max_rate = int(LocalSettings.objects.filter(key='AF-MaxRate')[0].value)
else:
LocalSettings(key='AF-MaxRate', value='2500').save()
max_rate = 2500
if LocalSettings.objects.filter(key='AF-MinRate').exists():
min_rate = int(LocalSettings.objects.filter(key='AF-MinRate')[0].value)
else:
LocalSettings(key='AF-MinRate', value='0').save()
min_rate = 0
if LocalSettings.objects.filter(key='AF-Increment').exists():
increment = int(LocalSettings.objects.filter(key='AF-Increment')[0].value)
else:
LocalSettings(key='AF-Increment', value='5').save()
increment = 5
if LocalSettings.objects.filter(key='AF-Multiplier').exists():
multiplier = int(LocalSettings.objects.filter(key='AF-Multiplier')[0].value)
else:
LocalSettings(key='AF-Multiplier', value='5').save()
multiplier = 5
if LocalSettings.objects.filter(key='AF-FailedHTLCs').exists():
failed_htlc_limit = int(LocalSettings.objects.filter(key='AF-FailedHTLCs')[0].value)
else:
LocalSettings(key='AF-FailedHTLCs', value='25').save()
failed_htlc_limit = 25
if LocalSettings.objects.filter(key='AF-UpdateHours').exists():
update_hours = int(LocalSettings.objects.filter(key='AF-UpdateHours').get().value)
else:
LocalSettings(key='AF-UpdateHours', value='24').save()
update_hours = 24
if LocalSettings.objects.filter(key='AF-LowLiqLimit').exists():
lowliq_limit = int(LocalSettings.objects.filter(key='AF-LowLiqLimit').get().value)
else:
LocalSettings(key='AF-LowLiqLimit', value='15').save()
lowliq_limit = 5
if LocalSettings.objects.filter(key='AF-ExcessLimit').exists():
excess_limit = int(LocalSettings.objects.filter(key='AF-ExcessLimit').get().value)
else:
LocalSettings(key='AF-ExcessLimit', value='95').save()
excess_limit = 95
if lowliq_limit >= excess_limit:
print('Invalid thresholds detected, using defaults...')
lowliq_limit = 5
excess_limit = 95
forwards = Forwards.objects.filter(forward_date__gte=filter_7day, amt_out_msat__gte=1000000)
forwards_1d = forwards.filter(forward_date__gte=filter_1day)
if forwards_1d.exists():
forwards_df_in_1d_sum = DataFrame.from_records(forwards_1d.values('chan_id_in').annotate(amt_out_msat=Sum('amt_out_msat'), fee=Sum('fee')), 'chan_id_in')
if forwards.exists():
forwards_df_in_7d_sum = DataFrame.from_records(forwards.values('chan_id_in').annotate(amt_out_msat=Sum('amt_out_msat'), fee=Sum('fee')), 'chan_id_in')
forwards_df_out_7d_sum = DataFrame.from_records(forwards.values('chan_id_out').annotate(amt_out_msat=Sum('amt_out_msat'), fee=Sum('fee')), 'chan_id_out')
else:
forwards_df_in_7d_sum = DataFrame()
forwards_df_out_7d_sum = DataFrame()
else:
forwards_df_in_1d_sum = DataFrame()
forwards_df_in_7d_sum = DataFrame()
forwards_df_out_7d_sum = DataFrame()
channels_df['amt_routed_in_1day'] = channels_df.apply(lambda row: int(forwards_df_in_1d_sum.loc[row.chan_id].amt_out_msat/1000) if (forwards_df_in_1d_sum.index == row.chan_id).any() else 0, axis=1)
channels_df['amt_routed_in_7day'] = channels_df.apply(lambda row: int(forwards_df_in_7d_sum.loc[row.chan_id].amt_out_msat/1000) if (forwards_df_in_7d_sum.index == row.chan_id).any() else 0, axis=1)
channels_df['amt_routed_out_7day'] = channels_df.apply(lambda row: int(forwards_df_out_7d_sum.loc[row.chan_id].amt_out_msat/1000) if (forwards_df_out_7d_sum.index == row.chan_id).any() else 0, axis=1)
channels_df['net_routed_7day'] = channels_df.apply(lambda row: round((row['amt_routed_out_7day']-row['amt_routed_in_7day'])/row['capacity'], 1), axis=1)
channels_df['local_balance'] = channels_df.apply(lambda row: row.local_balance + row.pending_outbound, axis=1)
channels_df['remote_balance'] = channels_df.apply(lambda row: row.remote_balance + row.pending_inbound, axis=1)
channels_df['in_percent'] = channels_df.apply(lambda row: int(round((row['remote_balance']/row['capacity'])*100, 0)), axis=1)
channels_df['out_percent'] = channels_df.apply(lambda row: int(round((row['local_balance']/row['capacity'])*100, 0)), axis=1)
channels_df['eligible'] = channels_df.apply(lambda row: (datetime.now()-row['fees_updated']).total_seconds() > (update_hours*3600), axis=1)
# Low Liquidity
lowliq_df = channels_df[channels_df['out_percent'] <= lowliq_limit].copy()
failed_htlc_df = DataFrame.from_records(FailedHTLCs.objects.exclude(wire_failure=99).filter(timestamp__gte=filter_1day).order_by('-id').values())
if failed_htlc_df.shape[0] > 0:
failed_htlc_df = failed_htlc_df[(failed_htlc_df['wire_failure']==15) & (failed_htlc_df['failure_detail']==6) & (failed_htlc_df['amount']>failed_htlc_df['chan_out_liq']+failed_htlc_df['chan_out_pending'])]
lowliq_df['failed_out_1day'] = 0 if failed_htlc_df.empty else lowliq_df.apply(lambda row: len(failed_htlc_df[failed_htlc_df['chan_id_out']==row.chan_id]), axis=1)
# INCREASE IF (failed htlc > threshhold) && (flow in == 0)
lowliq_df['new_rate'] = lowliq_df.apply(lambda row: row['local_fee_rate']+(5*multiplier) if row['failed_out_1day']>failed_htlc_limit and row['amt_routed_in_1day'] == 0 else row['local_fee_rate'], axis=1)
# Balanced Liquidity
balanced_df = channels_df[(channels_df['out_percent'] > lowliq_limit) & (channels_df['out_percent'] < excess_limit)].copy()
# IF NO FLOW THEN DECREASE FEE AND IF HIGH FLOW THEN SLOWLY INCREASE FEE
balanced_df['new_rate'] = balanced_df.apply(lambda row: row['local_fee_rate']+((2*multiplier)*(1+(row['net_routed_7day']/row['capacity']))) if row['net_routed_7day'] > 1 else row['local_fee_rate'], axis=1)
balanced_df['new_rate'] = balanced_df.apply(lambda row: row['local_fee_rate']-(3*multiplier) if (row['amt_routed_in_7day']+row['amt_routed_out_7day']) == 0 else row['new_rate'], axis=1)
# Excess Liquidity
excess_df = channels_df[channels_df['out_percent'] >= excess_limit].copy()
excess_df['revenue_7day'] = excess_df.apply(lambda row: int(forwards_df_out_7d_sum.loc[row.chan_id].fee) if forwards_df_out_7d_sum.empty == False and (forwards_df_out_7d_sum.index == row.chan_id).any() else 0, axis=1)
excess_df['revenue_assist_7day'] = excess_df.apply(lambda row: int(forwards_df_in_7d_sum.loc[row.chan_id].fee) if forwards_df_in_7d_sum.empty == False and (forwards_df_in_7d_sum.index == row.chan_id).any() else 0, axis=1)
# DECREASE IF (assisting channel or stagnant liq)
excess_df['new_rate'] = excess_df.apply(lambda row: row['local_fee_rate']-(5*multiplier) if row['net_routed_7day'] < 0 and row['revenue_assist_7day'] > (row['revenue_7day']*10) else row['local_fee_rate'], axis=1)
excess_df['new_rate'] = excess_df.apply(lambda row: row['local_fee_rate']-(5*multiplier) if (row['amt_routed_in_7day']+row['amt_routed_out_7day']) == 0 else row['new_rate'], axis=1)
#Merge back results
result_df = concat([lowliq_df, balanced_df, excess_df])
result_df['new_rate'] = result_df.apply(lambda row: int(round(row['new_rate']/increment, 0)*increment), axis=1)
result_df['new_rate'] = result_df.apply(lambda row: max_rate if max_rate < row['new_rate'] else row['new_rate'], axis=1)
result_df['new_rate'] = result_df.apply(lambda row: min_rate if min_rate > row['new_rate'] else row['new_rate'], axis=1)
result_df['adjustment'] = result_df.apply(lambda row: int(row['new_rate']-row['local_fee_rate']), axis=1)
return result_df
else:
return DataFrame()
if __name__ == '__main__':
print(main(Channels.objects.filter(is_open=True)))