A library that provides cryptographic and general-purpose functions for Secure Systems Lab projects at NYU. The routines are general enough to be usable by other projects.
securesystemslib supports public-key and general-purpose cryptography, such as ECDSA, Ed25519, RSA, SHA256, SHA512, etc. Most of the cryptographic operations are performed by the cryptography and PyNaCl libraries, but verification of Ed25519 signatures can be done in pure Python.
The cryptography library is used to generate keys and signatures with the ECDSA and RSA algorithms, and perform general-purpose cryptography such as encrypting keys. The PyNaCl library is used to generate Ed25519 keys and signatures. PyNaCl is a Python binding to the Networking and Cryptography Library. For key storage, RSA keys may be stored in PEM or JSON format, and Ed25519 keys in JSON format. Generating, importing, and loading cryptographic key files can be done with functions available in securesystemslib.
$ pip install securesystemslib
The default installation only supports Ed25519 keys and signatures (in pure Python). Support for RSA, ECDSA, and E25519 via the cryptography and PyNaCl libraries is available by installing the crypto and pynacl extras:
$ pip install securesystemslib[crypto] $ pip install securesystemslib[pynacl]
Note: In the instructions below, lines that start with >>> denote commands that should be entered by the reader, # begins the start of a comment, and text without prepended symbols is the output of a command.
>>> from securesystemslib.interface import * # The following function creates an RSA key pair, where the private key is # saved to "rsa_key1" and the public key to "rsa_key1.pub" (both saved to # the current working directory). A full directory path may be specified # instead of saving keys to the current working directory. If specified # directories do not exist, they will be created. >>> generate_and_write_rsa_keypair("rsa_key1", bits=2048, password="password") # If the key length is unspecified, it defaults to 3072 bits. A length of # less than 2048 bits raises an exception. A password may be supplied as an # argument, otherwise a user prompt is presented. If the password is an # empty string, the private key is saved unencrypted. >>> generate_and_write_rsa_keypair("rsa_key2") Enter a password for the RSA key: Confirm:
The following four key files should now exist:
- rsa_key1
- rsa_key1.pub
- rsa_key2
- rsa_key2.pub
# Continuing from the previous section . . . # Import an existing public key. >>> public_rsa_key1 = import_rsa_publickey_from_file("rsa_key1.pub") # Import an existing private key. If your private key is encrypted, # which it should be, you either have to pass a 'password' or enter one # on the prompt. >>> private_rsa_key1 = import_rsa_privatekey_from_file("rsa_key1", password='some passphrase") OR: >>> private_rsa_key1 = import_rsa_privatekey_from_file("rsa_key1", prompt=True) Enter a password for the encrypted RSA key:
import_rsa_privatekey_from_file() raises a securesystemslib.exceptions.CryptoError exception if the key / password is invalid:
securesystemslib.exceptions.CryptoError: RSA (public, private) tuple cannot be generated from the encrypted PEM string: Bad decrypt. Incorrect password?
Note: The specific message provided by the exception might differ depending on which cryptography library is used.
# Continuing from the previous section . . . # Generate and write an Ed25519 key pair. The private key is saved # encrypted. A 'password' argument may be supplied, otherwise a prompt is # presented. >>> generate_and_write_ed25519_keypair('ed25519_key') Enter a password for the Ed25519 key: Confirm: # Import the Ed25519 public key just created . . . >>> public_ed25519_key = import_ed25519_publickey_from_file('ed25519_key.pub') # and its corresponding private key. >>> private_ed25519_key = import_ed25519_privatekey_from_file('ed25519_key') Enter a password for the encrypted Ed25519 key:
# continuing from the previous sections . . . >>> generate_and_write_ecdsa_keypair('ecdsa_key') Enter a password for the ECDSA key: Confirm: >>> public_ecdsa_key = import_ecdsa_publickey_from_file('ecdsa_key.pub') >>> private_ecdsa_key = import_ecdsa_privatekey_from_file('ecdsa_key') Enter a password for the encrypted ECDSA key:
Note: Users may also access the crypto functions directly to perform cryptographic operations.
>>> from securesystemslib.keys import * >>> data = 'The quick brown fox jumps over the lazy dog' >>> ed25519_key = generate_ed25519_key() >>> signature = create_signature(ed25519_key, data) >>> rsa_key = generate_rsa_key(2048) >>> signature = create_signature(rsa_key, data) >>> ecdsa_key = generate_ecdsa_key() >>> signature = create_signature(ecdsa_key, data)
# Continuing from the previous sections . . . >>> data = 'The quick brown fox jumps over the lazy dog' >>> ed25519_key = generate_ed25519_key() >>> signature = create_signature(ed25519_key, data) >>> verify_signature(ed25519_key, signature, data) True >>> verify_signature(ed25519_key, signature, 'bad_data') False >>> rsa_key = generate_rsa_key() >>> signature = create_signature(rsa_key, data) >>> verify_signature(rsa_key, signature, data) True >>> ecdsa_key = generate_ecdsa_key() >>> signature = create_signature(ecdsa_key, data) >>> verify_signature(ecdsa_key, signature, data) True
create_rsa_encrypted_pem()
# Continuing from the previous sections . . . >>> rsa_key = generate_rsa_key() >>> private = rsa_key['keyval']['private'] >>> passphrase = 'secret' >>> encrypted_pem = create_rsa_encrypted_pem(private, passphrase)
import_rsakey_from_public_pem()
>>> rsa_key = generate_rsa_key() >>> public = rsa_key['keyval']['public'] >>> rsa_key2 = import_rsakey_from_public_pem(public)
import_rsakey_from_pem()
>>> rsa_key = generate_rsa_key() >>> public = rsa_key['keyval']['public'] >>> private = rsa_key['keyval']['private'] >>> rsa_key2 = import_rsakey_from_pem(public) >>> rsa_key3 = import_rsakey_from_pem(private)
extract_pem()
>>> rsa_key = generate_rsa_key() >>> private_pem = extract_pem(rsakey['keyval']['private'], private_pem=True) >>> public_pem = extract_pem(rsakey['keyval']['public'], private_pem=False)
encrypt_key()
>>> ed25519_key = generate_ed25519_key() >>> password = 'secret' >>> encrypted_key = encrypt_key(ed25519_key, password)
decrypt_key()
>>> ed25519_key = generate_ed25519_key() >>> password = 'secret' >>> encrypted_key = encrypt_key(ed25519_key, password) >>> decrypted_key = decrypt_key(encrypted_key.encode('utf-8'), password) >>> decrypted_key == ed25519_key True
create_rsa_encrypted_pem()
>>> rsa_key = generate_rsa_key() >>> private = rsa_key['keyval']['private'] >>> passphrase = 'secret' >>> encrypted_pem = create_rsa_encrypted_pem(private, passphrase)
is_pem_public()
>>> rsa_key = generate_rsa_key() >>> public = rsa_key['keyval']['public'] >>> private = rsa_key['keyval']['private'] >>> is_pem_public(public) True >>> is_pem_public(private) False
is_pem_private()
>>> rsa_key = generate_rsa_key() >>> private = rsa_key['keyval']['private'] >>> public = rsa_key['keyval']['public'] >>> is_pem_private(private) True >>> is_pem_private(public) False
import_ecdsakey_from_private_pem()
>>> ecdsa_key = generate_ecdsa_key() >>> private_pem = ecdsa_key['keyval']['private'] >>> ecdsa_key2 = import_ecdsakey_from_private_pem(private_pem)
import_ecdsakey_from_public_pem()
>>> ecdsa_key = generate_ecdsa_key() >>> public = ecdsa_key['keyval']['public'] >>> ecdsa_key2 = import_ecdsakey_from_public_pem(public)
import_ecdsakey_from_pem()
>>> ecdsa_key = generate_ecdsa_key() >>> private_pem = ecdsa_key['keyval']['private'] >>> ecdsa_key2 = import_ecdsakey_from_pem(private_pem) >>> public_pem = ecdsa_key['keyval']['public'] >>> ecdsa_key2 = import_ecdsakey_from_pem(public_pem)