-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathParsec.mo
398 lines (326 loc) · 11.6 KB
/
Parsec.mo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// mini parsec implementation based on OCaml opal
// https://github.com/pyrocat101/opal/
// implemented to exercise Motoko argument type inference
// Some deviations due to lack of polymorphic comparison, meaning we need to pass
// eq and leq functions to the singleton combinators (see below)
// We typically use tuples (e.g. bind), not currying (eg. Opal's choose),
// but could uniformly refactor to either as in Ocaml.
// Not terrible, but see comments and remaining explicit instantiations.
// Lesson: we often have to choose between argument type inference and
// unnotated anonymous function arguments. Why? Type argument inference relies on
// synthesizing argument types but implicit function typing relies on
// checking (not synthesizing) a function against an expected function type.
// Choose your poison.
import Array "mo:base/Array";
import Char "mo:base/Char";
import Debug "mo:base/Debug";
import Iter "mo:base/Iter";
import List "mo:base/List";
import Text "mo:base/Text";
module {
public module Lazy {
public class t<A>(f : () -> A) {
var state : { #delay : (() -> A); #result : A}
// ^ required for correct store typing
= #delay f;
public func force() : A {
switch state {
case (#delay f) { let r = f(); state := #result r; return r; };
case (#result r) { return r; };
}
};
};
};
public module LazyStream = {
public type t<A> = ? (A, Lazy.t<t<A>>);
public func ofIter<A>(iter : Iter.Iter<A>) : t<A> {
func next(iter : Iter.Iter<A>) : t<A> {
switch (iter.next()) {
case (?a) (?(a, Lazy.t(func () : t<A> { next iter; })));
case null null
};
};
next iter
};
public func ofFunc<A>(f : () -> ?A) : t<A> {
func next(f : () -> ?A) : t<A> {
switch (f ()) {
case (?a) (?(a, Lazy.t(func () : t<A> { next f; })));
case null null
};
};
next f
};
public func ofText(t : Text) : t<Char> { ofIter(Text.toIter t) };
};
// utils
public func implode(cs : List.List<Char>) : Text {
var t = "";
for (c in Iter.fromList cs) {
t #= Char.toText(c)
};
t
};
public func explode(t : Text) : List.List<Char> {
var l : List.List<Char> = null;
for (c in t.chars()){
l := List.push(c, l);
};
List.reverse(l);
};
public func parse<Token, A>(pa : Parser<Token, A>, input: LazyStream.t<Token>) : ? A {
switch (pa input) {
case (? (res, _)) (? res);
case null null;
}
};
public type Input<Token> = LazyStream.t<Token>;
public type Monad<Token, Result> = ?(Result, Input<Token>);
public type Parser<Token, Result> = Input<Token> -> Monad<Token, Result>;
public func ret<Token, A>(x : A) : Parser<Token, A> { func input { ?(x,input) }};
public func bind<Token, A, B>(pa : Parser<Token, A>, f : A -> Parser<Token, B>) : Parser<Token, B> {
func input {
switch (pa input) {
case (?(result,input)) (f result input);
case null null;
}
}
};
// not in opal: used to sequence parsers
public func pair<Token, A, B>(pa : Parser<Token, A>, pb : Parser<Token, B>) : Parser<Token, (A, B)> {
bind(pa, (func (a : A) : Parser<Token, (A, B)> {
bind(pb, (func (b : B) : Parser<Token, (A, B)> { ret (a,b) }))
}))
};
public func choose<Token, A>(pa1 : Parser<Token, A>, pa2 : Parser<Token, A>) : Parser<Token, A> {
func input {
let r1 = pa1 input;
switch r1 {
case null (pa2 input);
case _ r1;
}
}
};
public func mzero<Token, A>() : Parser<Token, A> = func (_ : Input<Token>) : Monad<Token, A> = null;
public func any<Token>(ls : Input<Token>) : Monad<Token, Token> {
switch ls {
case (?(token, input)) (?(token, input.force()));
case null null;
}
};
public func token<Token, A>(f : Token -> ?A) : Parser<Token, A> {
bind((func ls = any ls) : Parser<Token, Token>, (func (res : Token) = switch (f(res)) {
case null mzero();
case (?a) ret a;
}) : Token -> Parser<Token, A>)
};
public func satisfy<Token>(test : Token -> Bool) : Parser<Token, Token> {
bind((func ls = any ls) // eta-expand for implicit specialization - can we do better?
: Parser<Token, Token>,
(func res = if (test res) (ret res) else mzero())
: Token -> Parser<Token,Token>)
};
public func eof<Token, A>(a : A) : Parser<Token, A> {
func input {
switch input {
case null (?(a, null));
case _ null;
}
}
};
// not in opal: used to delay recursion
public func delay<Token, Result>(f : () -> Parser<Token, Result>) : Parser<Token, Result> =
func (i : Input<Token>) : Monad<Token, Result> { f () i};
// derived
// =>
public func map<Token, A, B>(pa : Parser<Token, A>, f : A -> B) : Parser<Token, B> {
bind(pa,
(func a = ret (f a)) : A -> Parser<Token, B>);
};
// >>
public func right<Token, A, B>(pa : Parser<Token, A>, pb : Parser<Token, B>) : Parser<Token, B> {
bind(pa,
(func _ = pb) : A -> Parser<Token, B>);
};
// <<
public func left<Token, A, B>(pa : Parser<Token,A>, pb : Parser<Token, B>) : Parser<Token, A> {
bind(
pa,
(func a = bind(pb,(func _ = ret a) : B -> Parser<Token, A>))
: A -> Parser<Token, A>);
};
// <~>
public func cons<Token, A>(pa : Parser<Token, A>, pas : Parser<Token, List.List<A>>) : Parser<Token, List.List<A>> {
bind(
pa,
(func a = bind(pas,(func as = ret (List.push(a, as))) : List.List<A> -> Parser<Token, List.List<A>>))
: A -> Parser<Token, List.List<A>>);
};
public func choice<Token, A>(ps : [Parser<Token, A>]) : Parser<Token, A> {
func input {
label l
for (p in ps.vals()) {
let r = p input;
switch r {
case null { continue l; };
case _ return r;
}
};
return null;
}
};
public func count<Token, A>(n : Nat, pa : Parser<Token, A>) : Parser<Token, List.List<A>> {
if (n > 0) cons(pa, count(n - 1 : Nat, pa))
else ret (List.nil<A>()); // needs <A> or constraint.
};
public func between<Token, A, B, C>(
pa : Parser<Token, A>,
pb : Parser<Token, B>,
pc : Parser<Token, C>) : Parser<Token, B> {
right(pa, left(pb, pc));
};
public func option<Token, A>(default : A, pa : Parser<Token, A>) : Parser<Token, A> {
choose(pa, ret<Token, A> default)
};
public func optional<Token, A>(pa : Parser<Token, A>) : Parser<Token, ()> {
option((), right(pa, ret<Token,()>()));// needs <...> or constraint
};
public func skipMany<Token, A>(pa : Parser<Token, A>) : Parser<Token, ()> {
option((), bind(pa, (func _ = skipMany pa) : A -> Parser<Token, ()>)); // needs constraint
};
public func skipMany1<Token, A>(pa : Parser<Token, A>) : Parser<Token, ()> {
right(pa, skipMany pa)
};
public func many<Token, A>(pa : Parser<Token, A>) : Parser<Token, List.List<A>> {
option(List.nil<A>(),
bind(pa,
(func a {
bind(many pa,
(func as { ret (List.push(a,as)) }) :
List.List<A> -> Parser<Token, List.List<A>>) }) // needs constraint
: A -> Parser<Token, List.List<A>> )) // needs constraint
};
public func many1<Token, A>(pa : Parser<Token, A>) : Parser<Token, List.List<A>> {
cons(pa, many pa);
};
public func sepBy1<Token, A, B>(pa : Parser<Token, A>, sep : Parser<Token, B>)
: Parser<Token,List.List<A>> {
cons(pa, many(right(sep, pa)))
};
public func sepBy<Token, A, B>(pa : Parser<Token, A>, sep : Parser<Token, B>)
: Parser<Token, List.List<A>> {
choose(sepBy1(pa, sep), ret<Token, List.List<A>>(List.nil())) // NB: can't infer but need to provide <...>
};
public func endBy1<Token, A, B>(pa : Parser<Token, A>, sep : Parser<Token, B>)
: Parser<Token, List.List<A>> {
left(sepBy1(pa, sep), sep)
};
public func endBy<Token, A, B>(pa : Parser<Token, A>, sep : Parser<Token, B>)
: Parser<Token, List.List<A>> {
choose(endBy1(pa, sep), ret<Token, List.List<A>>(List.nil())) // NB: can't infer but need to <...>
};
public func chainl1<Token, A, B>(
pa : Parser<Token, A>,
op : Parser<Token, (A, A) -> A>)
: Parser<Token, A> {
func iter(a : A) : Parser<Token, A> {
choose(
bind(
pair(op, pa),
func ((f : (A, A) -> A, b : A)) : Parser<Token, A> { iter (f(a, b)) }),
ret<Token, A> a)
};
bind(pa, iter)
};
public func chainl<Token, A, B>(
pa : Parser<Token, A>,
op: Parser<Token, (A, A) -> A>,
default : A) : Parser<Token, A> {
choose(
chainl1(pa, op),
ret<Token, A> default)
};
public func chainr1<Token, A, B>(
pa : Parser<Token, A>,
op: Parser<Token, (A, A) -> A>)
: Parser<Token, A> {
bind(pa,
func (a : A) : Parser<Token, A>
{ bind(
op,
func (f : (A, A) -> A) : Parser<Token, A> {
choose(
map(chainr1(pa, op), func (a2 : A) : A { f (a, a2)}),
ret<Token, A> a)
})
})
};
public func chainr<Token, A, B>(
pa : Parser<Token, A>,
op: Parser<Token, (A, A) -> A>,
default : A) : Parser<Token, A> {
choose(
chainr1(pa, op),
ret<Token, A> default)
};
// singletons (need to pass in eq/leq)
public func exactly<Token>(eq : (Token, Token) -> Bool, t : Token) : Parser<Token, Token> {
satisfy (func (t1 : Token) : Bool = eq(t, t1))
};
public func oneOf<Token>(eq : (Token, Token)-> Bool, tokens : [Token]) : Parser<Token, Token> {
satisfy (func (t : Token) : Bool {
for (t1 in tokens.vals()) {
if (eq(t, t1)) { return true }
};
return false
})
};
public func noneOf<Token>(eq : (Token, Token) -> Bool, tokens : [Token]) : Parser<Token, Token> {
satisfy (func (t : Token) : Bool {
for (t1 in tokens.vals()) {
if (eq(t, t1)) { return false }
};
return true;
})
};
public func range<Token>(leq : (Token, Token) -> Bool, l : Token, r : Token) : Parser<Token, Token> {
satisfy (func (t : Token) : Bool { leq(l, t) and leq(t, r) })
};
// Char parsers
// place in a class otherwise rejected as non-static
// alternative is to eta-expand each one
// annoyance: all decs must be typed in order to refer to previous outer combinators
// is that a bug?
public class CharParsers() {
func eq(c1 : Char, c2 : Char) : Bool { c1 == c2 };
func leq(c1 : Char, c2 : Char) : Bool { c1 <= c2 };
public let space : Parser<Char, Char> =
oneOf<Char>(func (c1, c2) { c1 == c2 },
[' ', '\t', '\r', '\n']);
public let spaces : Parser<Char, ()> = skipMany space;
public let newline : Parser<Char, Char> = exactly(eq, '\n');
public let tab : Parser<Char, Char> = exactly(eq, '\n');
public let upper : Parser<Char, Char> = range(leq, 'A', 'Z');
public let lower : Parser<Char, Char> = range(leq, 'a', 'z');
public let digit : Parser<Char, Char> = range(leq, '0', '9');
public let letter : Parser<Char, Char> = choose(lower, upper);
public let alphaNum : Parser<Char, Char> = choose(letter, digit);
public let hexDigit : Parser<Char, Char> =
choose(range(leq, 'a', 'f'),
choose (range(leq, 'A', 'F'),
digit));
public let octDigit : Parser<Char, Char> = range(leq, '0', '7');
public func lexeme<A>(pa : Parser<Char, A>) : Parser<Char, A> {
right(spaces, pa)
};
public func token(t : Text) : Parser<Char, Text> {
func iter(i : Iter.Iter<Char>) : Parser<Char, Text> {
switch (i.next()) {
case null (ret t);
case (?c) (right(exactly(eq, c), iter i));
}
};
lexeme(iter(t.chars()));
}
}
}