-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFunctions.py
533 lines (495 loc) · 21.6 KB
/
Functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
def addGPR2Models(model,cyc):
'''
This function uses the function extractGeneAndProteinAssociation to add GPR
associations to reactions with missing GPR in the model
Input: 1) cobra model 2) pythonCyc PGDB instance
Output: cobra model
Author: Sanu Shameer ([email protected])
'''
reactions = cyc.reactions
rxnPresentList = list()
rxnIDed = dict()
for CycRxn in reactions.instances:
CycRxn_id = CycRxn.frameid
CycRxn_id_adapted = convertCycID2sbmlID(CycRxn_id)
tempList = list()
for rxn in model.reactions:
if CycRxn_id_adapted == rxn.id[0:rxn.id.rindex("_")]:
tempList.append(rxn)
elif CycRxn_id_adapted == rxn.id[0:rxn.id.rindex("_")].replace("_NADP","").replace("_NAD",""):
tempList.append(rxn)
rxnIDed[CycRxn_id]=tempList
SoyIgnoreList = ["RXN_9650_p","2_KETO_ADIPATE_DEHYDROG_RXN_m","Phytol_biosynthesis_p" \
,"CYSTEINE_AMINOTRANSFERASE_RXN_m","GLYCINE_TRNA_LIGASE_RXN_c" \
,"RXN66_1_c","RXN_9648_p","RXN-9651","Plastidial_ATP_Synthase_p" \
,"GGPP_biosynthesis_p","RXN_9653_p","lycopene_biosynthesis_p" \
,"RXN_2141_p","SUCCINYL_COA_HYDROLASE_RXN_m","PROTON_ATPase_c" \
,"MDA_Fd_Ascorbate_p","MercaptoPyruvateSulfurtransferase_m" \
,"Phytol_degradation_p","RXN_9652_p","A_B_oxidation_x","unlProtHYPO_c" \
,"Mitochondrial_ATP_Synthase_m","IPP_biosynthesis_c","Mehler_Reaction_p" \
,"Beta_Oxidation_x","HMBPP_synthesis_p","OROTATE_REDUCTASE_NADH_RXN_p" \
,"Ferredoxin_Plastoquinone_Reductase_p","RXN_9651_p","NADPH_Dehydrogenase_p" \
,"Plastoquinol_Oxidase_p","SUCCINATE_COA_LIGASE_GDP_FORMING_RXN_m","RXN_1781_v" \
,"PREPHENATE_DEHYDROGENASE_NADP_RXN_p","PREPHENATEDEHYDROG_RXN_p" \
,"MALEYLACETOACETATE_ISOMERASE_RXN_c","RXN_9654_p","LCYSDESULF_RXN_c","RXN_9958_NAD_m" \
,"HEXOKINASE_RXN_MANNOSE_c","PYRUVDEH_RXN_p","PYRUVDEH_RXN_m"] #last 3 lines present in latest version of SoyCyc
print("--------------\nThis list of metabolic reactions are ignored")
print(SoyIgnoreList)
print("--------------")
IDedlist = set()
for rxnlist in rxnIDed.values():
IDedlist = IDedlist.union(set(rxnlist))
for rxn in set(model.reactions) - IDedlist:
if not("_tx" in rxn.id or "_pc" in rxn.id or \
"_mc" in rxn.id or "_xc" in rxn.id or \
"_im" in rxn.id or "_vc" in rxn.id or \
"_ec" in rxn.id or "_ep" in rxn.id or \
"_pr" in rxn.id) \
and (not "Biomass" in rxn.id) and \
(not "biomass" in rxn.id) and \
(not "Protein" in rxn.id) and \
(not "TRNA_LIGASE" in rxn.id):
if rxn.id not in SoyIgnoreList:
print(rxn.id)
for k in rxnIDed.keys():
for v in rxnIDed.get(k):
rxn = v
if rxn.gene_reaction_rule == "":
#print k
GPR = extractGeneAndProteinAssociation(cyc,k)
if GPR != "()":
GPR = GPR.replace("() or ","")
rxn.gene_reaction_rule = GPR
return model
def extractGeneAndProteinAssociation(cyc,frame_id):
'''
This functions adds Gene Associations to cobra model from Pathway Tools via
PythonCyc
Input: 1) pythonCyc PGDB instance 2) Frame id of reaction from Pathway Tools
Output: Gene-Protein-Reaction associations from a PGDB
Author: Sanu Shameer ([email protected])
'''
rxn = getFrame(cyc,frame_id)
if frame_id in cyc.reactions.instances:
print("Error check if "+frame_id+" is reaction")
return ""
else:
if "enzymatic_reaction" not in dir(rxn):
return ""
else:
enzrxns = cyc.get_frame_objects(rxn.enzymatic_reaction)
GPR = "(GPR)"
temp1 = ""
for enzrxn in enzrxns:
enz = getFrame(cyc,enzrxn.enzyme)
if "names" not in dir(enz):
continue
if "gene" not in dir(enz):
continue
if temp1 == "":
temp1 = str(enz.frameid)
else:
temp1 = temp1 +" or "+str(enz.frameid)
temp2 = ""
for gene in enz.gene:
gene = getFrame(cyc,gene)
if "accession_1" not in dir(gene):
temp1.replace(enz.frameid,"")
continue
if temp2 == "":
temp2 = gene.accession_1
else:
temp2 = temp2 +" or "+gene.accession_1
#print temp1
#print temp2
temp1 = temp1.replace(enz.frameid,"("+temp2+")")
GPR = GPR.replace("GPR",temp1)
return GPR
def getFrame(cyc,frame_id):
'''
This function retrieves pythoncyc frame from a PGDB instance
Input: 1) pythonCyc PGDB instance 2) Frame id from Pathway Tools
Output: Python instance of a frame
Author: Sanu Shameer ([email protected])
'''
frame = cyc.get_frame_objects([frame_id])[0]
return frame
def convertCycID2sbmlID(id):
'''
This function converts Pathway Tools IDs to one that is SBML compliant
Input: BioCyc IDs
Output: SBML compliant IDs
Author: Sanu Shameer ([email protected])
'''
new_id = id.replace(".","_PERIOD_")
new_id = new_id.replace("%2b","_")
new_id = new_id.replace("'","_")
new_id = new_id.replace("β","B")
new_id = new_id.replace("β","B")
new_id = new_id.replace("|","")
new_id = new_id.replace("+-","_")
new_id = new_id.replace("--","_")
new_id = new_id.replace("-","_")
new_id = new_id.replace("+","_")
new_id = new_id.replace("'","_")
new_id = new_id.replace("(","_")
new_id = new_id.replace(")","_")
new_id = new_id.replace("/","_")
new_id = new_id.replace("__","_")
return new_id
def find_average(temp_list):
'''
This function calculates the average from a list of numbers
Input: list
Output: float
Author:Sanu Shameer ([email protected])
'''
return sum(temp_list)/len(temp_list)
def adjustObjectiveBasedOnDaylength(diel_leaf,daylength,obj_rxn="diel_biomass",Phloem_day = "X_Phloem_contribution_t1",Phloem_night="X_Phloem_contribution_t2"):
'''
This function adjusts the day/night phloem contribution
in a diel leaf objective.
Input: 1) diel model, 2) length of day in hours, 3)ID of objective,
4) Metabolite ID of day-time phloem, 5) Metabolite ID of night-time
phloem
Output: 1)diel model
'''
ratio = float(3*daylength)/(24-daylength)
rxn = diel_leaf.reactions.get_by_id(obj_rxn)
met1 = diel_leaf.metabolites.get_by_id(Phloem_day)
coeff = abs(rxn.metabolites.get(met1))
new_coeff = ratio - coeff
rxn.add_metabolites({met1:-1*new_coeff})
return diel_leaf
def generateMetaboliteFormula(rxn):
count = 0
for met in rxn.metabolites:
if met.formula=="" or met.formula=="NA" or met.formula == None:
if met.formula == "NA" or met.formula == None:
met.formula = ""
count = count + 1
if count == 1:
unb = rxn.check_mass_balance()
#print(unb.keys())
for met in rxn.metabolites:
stoich = rxn.metabolites[met]
if met.formula == "":
tempForm = ""
for a in ["C","H","O"]:
if a in unb.keys():
if round(unb[a]/stoich,6)==0:
continue
tempForm = tempForm+a+str(abs(unb[a])/stoich)
#print(a)
#print(unb[a])
#print(stoich)
#print(abs(unb[a])/stoich)
for a in unb.keys():
if a in ["C","H","O"]:
continue
if a=="charge" or round(unb[a]/stoich,6)==0:
continue
tempForm = tempForm+a+str(abs(unb[a])/stoich)
met.formula = tempForm
print(met.id)
print(tempForm)
else:
print("Unable to generate missing metabolite formula")
def removeSpecificMetChargedState(model,metlist):
for met in metlist:
met = model.metabolites.get_by_id(met)
rxn2edit = set(met.reactions)
defaultForm = model.metabolites.get_by_id(met.id[1:])
met.remove_from_model()
for rxn in rxn2edit:
rxn.add_metabolites({defaultForm:-0.03,
model.metabolites.get_by_id("PROTON_"+defaultForm.compartment):-0.03})
return model
def updateFAcomposition(model,organ,biomass):
temp = model.copy()
temp.reactions.FattyAcid_composition_p.remove_from_model()
temp.metabolites.Fatty_Acids_p.formula=""
temp.metabolites.Fatty_Acids_c.formula=""
temp.metabolites.Long_Chain_Acyl_CoAs_p.formula=""
from cobra.core import Reaction
FACP = {"PALMITATE_p":"Palmitoyl_ACPs_p",
"CPD_9245_p":"Palmitoleoyl_ACP_p",
"CPD_17412_p":"hexadecadienoate_ACP_p",
"CPD_17291_p":"hexadecatrienoate_ACP_p",
"STEARIC_ACID_p":"Stearoyl_ACPs_p",
"OLEATE_CPD_p":"Oleoyl_ACPs_p",
"Octadecadienoate_p":"Octadecadienoyl_ACP_p",
"LINOLENIC_ACID_p":"Octadecatrienoyl_ACP_p",
"ARACHIDIC_ACID_p":"Arachidoyl_ACPs_p",
"CPD_16709_p":"Eicosenoyl_ACP_p",
"DOCOSANOATE_p":"Behenoyl_ACPs_p"}
PLs = ["ACYL_SN_GLYCEROL_3P_p","L_PHOSPHATIDATE_p","L_PHOSPHATIDATE_m","DIACYLGLYCEROL_p",
"DIACYLGLYCEROL_r","Triacylglycerols_p","PHOSPHATIDYL_CHOLINE_r",
"L_1_PHOSPHATIDYL_ETHANOLAMINE_r","L_1_PHOSPHATIDYL_GLYCEROL_p",
"L_1_PHOSPHATIDYL_GLYCEROL_P_p","L_1_PHOSPHATIDYL_GLYCEROL_P_m",
"L_1_PHOSPHATIDYL_GLYCEROL_m","2_Lysophosphatidylcholines_r",
"Lysophosphatidylglycerols_r","CDPDIACYLGLYCEROL_p","CDPDIACYLGLYCEROL_m",
"D_Galactosyl_12_diacyl_glycerols_p","Galactosyl_galactosyl_diacyl_glycerols_p"]
for met in PLs:
met=temp.metabolites.get_by_id(met)
met.formula=""
FAdict = dict(biomass[biomass["type"]=="fattyacid"][organ])
k = organ
RXN1 = Reaction("Fatty_acid_mix_"+k)
RXN2 = Reaction("Fatty_acid_ACP_"+k)
tot = 0
for met in FAdict.keys():
RXN1.add_metabolites({temp.metabolites.get_by_id(met):-1*FAdict[met]})
RXN2.add_metabolites({temp.metabolites.get_by_id(FACP[met]):-1*FAdict[met]})
tot = tot+FAdict[met]
print(tot)
if tot==0:
RXN1.add_metabolites({temp.metabolites.PALMITATE_p:-1})
RXN2.add_metabolites({temp.metabolites.Palmitoyl_ACPs_p:-1})
tot = 1
RXN1.add_metabolites({temp.metabolites.Fatty_Acids_p:tot})
RXN1.lower_bound = 1000
RXN1.upper_bound = 0
temp.add_reaction(RXN1)
RXN2.add_metabolites({temp.metabolites.Fatty_acyl_ACP_p:tot})
RXN2.lower_bound = 1000
RXN2.upper_bound = 0
temp.add_reaction(RXN2)
generateMissingFormula(temp)
return temp
def generateMissingFormula(model,debug=False):
loop_counter = 0
former = 0
for met in model.metabolites:
if met.formula == "" or met.formula == "NA":
former = former +1
latter = 1
while True:
loop_counter = loop_counter+1
if debug:
print("Loop = "+str(loop_counter))
former = latter
for rxn in model.reactions:
count = 0
for met in rxn.metabolites:
if met.formula=="" or met.formula=="NA" or met.formula == None:
if met.formula == "NA" or met.formula == None:
met.formula = ""
count = count + 1
coeff = rxn.metabolites[met]
if count == 1:
unb = rxn.check_mass_balance()
eqn = rxn.reaction
eqn = " "+eqn+" "
for met in rxn.metabolites.keys():
formula = met.formula
if formula == None:
formula = "0"
NF_list.add(rxn.id)
eqn=eqn.replace(" "+met.id+" ","("+formula+")")
if debug:
print(eqn)
print(unb)
for met in rxn.metabolites:
if met.formula == "":
tempForm = ""
for a in sorted(unb.keys()):
if a=="charge" or round(unb[a],2)==0:
continue
num = float(abs(unb[a]))/abs(coeff)
if str(round(num))==str(num):
tempForm = tempForm+a+str(int(round(num)))
else:
tempForm = tempForm+a+str(num)
#print(a)
#print(round(num)==num)
#print(round(num))
#print(num)
#print(type(round(num)))
#print(type(num))
met.formula = tempForm
if debug:
print(met.id)
print(tempForm)
latter = 0
for met in model.metabolites:
if met.formula == "" or met.formula == "NA":
latter = latter +1
if former == latter:
break
def generateStemModel(model):
from cobra.core import Reaction
for met in model.reactions.Phloem_output_tx.metabolites.keys():
met2 = met.copy()
if met.id=="sSUCROSE_b":
met2.id = "SUCROSE_ph"
met = model.metabolites.get_by_id("SUCROSE_c")
elif "PROTON" in met.id:
continue
else:
met2.id = met.id.replace("_c","_ph")
met2.compartment = "ph"
model.add_metabolites(met2)
rxn = Reaction(met2.id+"_exchange")
rxn.add_metabolites({met2:1})
model.add_reaction(rxn)
rxn = Reaction(met2.id.replace("_ph","_phloem_uptake"),name=met2.id.replace("_ph","_phloem_uptake"))
rxn.add_metabolites({met2:-1,model.metabolites.get_by_id("PROTON_e"):-1,
met:1,model.metabolites.get_by_id("PROTON_c"):1})
rxn.lower_bound = 0
rxn.upper_bound = 1000
model.add_reaction(rxn)
#print(rxn.reaction)
return model
def generateRootModel(model,symbiont=None):
from cobra.core import Reaction
for met in model.reactions.Phloem_output_tx.metabolites.keys():
met2 = met.copy()
if met.id=="sSUCROSE_b":
met2.id = "SUCROSE_ph"
met = model.metabolites.get_by_id("SUCROSE_c")
elif "PROTON" in met.id:
continue
else:
met2.id = met.id.replace("_c","_ph")
met2.compartment = "ph"
model.add_metabolites(met2)
rxn = Reaction(met2.id+"_exchange")
rxn.add_metabolites({met2:1})
model.add_reaction(rxn)
rxn = Reaction(met2.id.replace("_ph","_phloem_uptake"),name=met2.id.replace("_ph","_phloem_uptake"))
rxn.add_metabolites({met2:-1,model.metabolites.get_by_id("PROTON_e"):-1,
met:1,model.metabolites.get_by_id("PROTON_c"):1})
rxn.lower_bound = 0
rxn.upper_bound = 1000
model.add_reaction(rxn)
#add xylem reactions
for met in ["CAII","MGII","KI","NITRATE","SULFATE","AMMONIUM","WATER","GLT","L_ASPARTATE","ASN","GLN"]:
met2 = model.metabolites.get_by_id(met+"_c").copy()
met2.id = met+"_xy"
met2.compartment = "xy"
rxn = Reaction(met+"_exchange")
rxn.add_metabolites({met2:-1})
rxn.lower_bound = 0
rxn.upper_bound = 1000
model.add_reaction(rxn)
rxn = Reaction(met+"_xylem_export")
rxn.add_metabolites({model.metabolites.get_by_id(met+"_c"):-1,met2:1})
model.add_reaction(rxn)
if symbiont == None:
return model
else:
model.reactions.Nitrate_tx.upper_bound = 0
model.reactions.Nitrate_tx.lower_bound = 0
#adding symbiont compartment
from cobra import io
rhizo = io.read_sbml_model(symbiont["path"])
for met in rhizo.metabolites:
met.compartment = met.compartment+"_rhizo"
rhizo.compartments={"c_rhizo":"rhizobe cytosol","e_rhizo":"rhizobe extracellular"}
model = model+rhizo
# rxn = Reaction("Sucrose_exchange_symbiont")
# rxn.name = rxn.id.replace("_"," ")
# rxn.add_metabolites({model.metabolites.get_by_id("SUCROSE_c"):-1,model.metabolites.get_by_id("cpd00076[e0]"):1})
# rxn.lower_bound = -1000
# rxn.upper_bound = 1000
# model.add_reaction(rxn)
rxn = Reaction("Alanine_exchange_symbiont")
rxn.name = rxn.id.replace("_"," ")
rxn.add_metabolites({model.metabolites.get_by_id("L_ALPHA_ALANINE_c"):-1,
model.metabolites.get_by_id("ala__L[e]"):1})
rxn.lower_bound = -1000
rxn.upper_bound = 1000
model.add_reaction(rxn)
rxn = Reaction("Aspartate_exchange_symbiont")
rxn.name = rxn.id.replace("_"," ")
rxn.add_metabolites({model.metabolites.get_by_id("L_ASPARTATE_c"):-1,
model.metabolites.get_by_id("asp__L[e]"):1})
rxn.lower_bound = -1000
rxn.upper_bound = 1000
model.add_reaction(rxn)
rxn = Reaction("Glutamate_exchange_symbiont")
rxn.name = rxn.id.replace("_"," ")
rxn.add_metabolites({model.metabolites.get_by_id("GLT_c"):-1,
model.metabolites.get_by_id("glu__L[e]"):1})
rxn.lower_bound = -1000
rxn.upper_bound = 1000
model.add_reaction(rxn)
rxn = Reaction("Malate_exchange_symbiont")
rxn.name = rxn.id.replace("_"," ")
rxn.add_metabolites({model.metabolites.get_by_id("MAL_c"):-1,
model.metabolites.get_by_id("mal__L[e]"):1})
rxn.lower_bound = -1000
rxn.upper_bound = 1000
model.add_reaction(rxn)
rxn = Reaction("Succinate_exchange_symbiont")
rxn.name = rxn.id.replace("_"," ")
rxn.add_metabolites({model.metabolites.get_by_id("SUC_c"):-1,
model.metabolites.get_by_id("succ[e]"):1})
rxn.lower_bound = -1000
rxn.upper_bound = 1000
model.add_reaction(rxn)
rxn = Reaction("Ammonium_exchange_symbiont")
rxn.name = rxn.id.replace("_"," ")
rxn.add_metabolites({model.metabolites.get_by_id("AMMONIUM_c"):-1,
model.metabolites.get_by_id("fixedNH3[e]"):1})
rxn.lower_bound = -1000
rxn.upper_bound = 1000
model.add_reaction(rxn)
return model
def generateSeedModel(model):
from cobra.core import Reaction
for met in model.reactions.Phloem_output_tx.metabolites.keys():
met2 = met.copy()
if met.id=="sSUCROSE_b":
met2.id = "SUCROSE_ph"
met = model.metabolites.get_by_id("SUCROSE_c")
elif "PROTON" in met.id:
continue
else:
met2.id = met.id.replace("_c","_ph")
met2.compartment = "ph"
model.add_metabolites(met2)
rxn = Reaction(met2.id+"_exchange")
rxn.add_metabolites({met2:1})
model.add_reaction(rxn)
rxn = Reaction(met2.id.replace("_ph","_phloem_uptake"),name=met2.id.replace("_ph","_phloem_uptake"))
rxn.add_metabolites({met2:-1,model.metabolites.get_by_id("PROTON_e"):-1,
met:1,model.metabolites.get_by_id("PROTON_c"):1})
rxn.lower_bound = 0
rxn.upper_bound = 1000
model.add_reaction(rxn)
#print(rxn.reaction)
return model
def createEmptyBiomassDataFrame():
import pandas as pd
biomass = pd.DataFrame(data={"":["sSUCROSE_b","GLC_c","FRU_c","Starch_b","Cellulose_b","Xylan_b",
"L_PHOSPHATIDATE_p","PHOSPHATIDYL_CHOLINE_r",
"L_1_PHOSPHATIDYL_ETHANOLAMINE_r","DIACYLGLYCEROL_p",
"Galactosyl_galactosyl_diacyl_glycerols_p",
"D_Galactosyl_12_diacyl_glycerols_p","2_Lysophosphatidylcholines_r",
"Lysophosphatidylglycerols_r","Triacylglycerols_p",
"L_1_PHOSPHATIDYL_GLYCEROL_p","L_1_phosphatidyl_inositols_r",
"SULFOQUINOVOSYLDIACYLGLYCEROL_p","Protein_b",
"sMAL_b","sCIT_b","sFUM_b","ARG_c","HIS_c","LYS_c","sASP_b",
"sGLU_b","sSER_b","THR_c","ASN_c","sGLN_b","CYS_c",
"GLY_c","PRO_c","sALA_b","VAL_c","ILE_c","LEU_c",
"MET_c","PHE_c","TYR_c","TRP_c","sGABA_b","PALMITATE_p",
"CPD_9245_p","CPD_17412_p","CPD_17291_p","STEARIC_ACID_p",
"OLEATE_CPD_p","Octadecadienoate_p","LINOLENIC_ACID_p",
"ARACHIDIC_ACID_p","CPD_16709_p","DOCOSANOATE_p",
"SUC_c","FUM_c","MAL_c","CIS_ACONITATE_c","CIT_c","MYO_INOSITOL_c",
"pHIS_b","pILE_b","pTHR_b","pARG_b","pASN_b","pGLU_b","pPHE_b",
"pGLN_b","pTYR_b","pMET_b","pASP_b","pVAL_b","pLYS_b","pSER_b",
"pGLY_b","pALA_b","pLEU_b","pPRO_b","pCYS_b","pTRP_b","COUMARATE_c"],
"type":[""]*81,
"leaf":[0.0]*81,"stem":[0.0]*81,"root":[0.0]*81,"seed":[0.0]*81,},dtype="float64")
biomass = biomass.set_index("")
for i in ["pHIS_b","pILE_b","pTHR_b","pARG_b","pASN_b","pGLU_b","pPHE_b","pGLN_b","pTYR_b","pMET_b",
"pASP_b","pVAL_b","pLYS_b","pSER_b","pGLY_b","pALA_b","pLEU_b","pPRO_b","pCYS_b","pTRP_b"]:
biomass.at[i,"type"]="protein"
for i in ["PALMITATE_p","CPD_9245_p","CPD_17412_p","CPD_17291_p","STEARIC_ACID_p",
"OLEATE_CPD_p","Octadecadienoate_p","LINOLENIC_ACID_p",
"ARACHIDIC_ACID_p","CPD_16709_p","DOCOSANOATE_p"]:
biomass.at[i,"type"]="fattyacid"
return biomass