forked from freemint/fdlibm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathe_sinhl.c
104 lines (85 loc) · 2.71 KB
/
e_sinhl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/* e_asinhl.c -- long double version of e_asinh.c.
* Conversion to long double by Ulrich Drepper,
* Cygnus Support, [email protected].
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_sinhl(x)
* Method :
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
* 1. Replace x by |x| (sinhl(-x) = -sinhl(x)).
* 2.
* E + E/(E+1)
* 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x)
* 2
*
* 25 <= x <= lnovft : sinhl(x) := expl(x)/2
* lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2)
* ln2ovft < x : sinhl(x) := x*shuge (overflow)
*
* Special cases:
* sinhl(x) is |x| if x is +INF, -INF, or NaN.
* only sinhl(0)=0 is exact for finite x.
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __NO_LONG_DOUBLE_MATH
#ifndef __have_fpu_sinh
long double __ieee754_sinhl(long double x)
{
long double t, w, h;
uint32_t jx, ix, i0, i1;
static const long double one = 1.0;
static const long double shuge = 1.0e4931L;
/* Words of |x|. */
GET_LDOUBLE_WORDS(jx, i0, i1, x);
ix = jx & IEEE854_LONG_DOUBLE_MAXEXP;
/* x is INF or NaN */
if (ix == IEEE854_LONG_DOUBLE_MAXEXP)
return x + x;
h = 0.5;
if (jx & 0x8000)
h = -h;
/* |x| in [0,25], return sign(x)*0.5*(E+E/(E+1))) */
if (ix < 0x4003 || (ix == 0x4003 && i0 <= UC(0xc8000000)))
{ /* |x|<25 */
if (ix < 0x3fdf) /* |x|<2**-32 */
if (shuge + x > one)
return x; /* sinh(tiny) = tiny with inexact */
t = __ieee754_expm1l(__ieee754_fabsl(x));
if (ix < 0x3fff)
return h * (2.0 * t - t * t / (t + one));
return h * (t + t / (t + one));
}
/* |x| in [25, log(maxdouble)] return 0.5*exp(|x|) */
if (ix < 0x400c || (ix == 0x400c && i0 < UC(0xb17217f7)))
return h * __ieee754_expl(__ieee754_fabsl(x));
/* |x| in [log(maxdouble), overflowthreshold] */
if (ix < 0x400c || (ix == 0x400c && (i0 < UC(0xb174ddc0) || (i0 == UC(0xb174ddc0) && i1 <= UC(0x31aec0ea)))))
{
w = __ieee754_expl(0.5 * __ieee754_fabsl(x));
t = h * w;
return t * w;
}
/* |x| > overflowthreshold, sinhl(x) overflow */
return x * shuge;
}
#endif
long double __sinhl(long double x)
{
long double z = __ieee754_sinhl(x);
if (!isfinite(z) && isfinite(x) && _LIB_VERSION != _IEEE_)
return __kernel_standard_l(x, x, z, KMATHERRL_SINH); /* sinh overflow */
return z;
}
__typeof(__sinhl) sinhl __attribute__((weak, alias("__sinhl")));
#endif