-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstacking_sklearn.py
66 lines (56 loc) · 2.27 KB
/
stacking_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Import libraries
import pandas as pd
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import StackingClassifier
from sklearn.model_selection import train_test_split
# Define used models to evaluate accuracy
def get_models():
# Create dictionary
models = dict()
# Add desired models to dictionary
models['KNN'] = KNeighborsClassifier(n_neighbors = 5)
models['DT'] = DecisionTreeClassifier(max_depth = 7)
models['NB'] = GaussianNB()
models['Stacking'] = get_stacking()
# Return the dictionary with the desired models to evaluate
return models
# Get a stacking ensemble of models
def get_stacking():
# Define the base models
level0 = list()
level0.append(('KNN', KNeighborsClassifier(n_neighbors = 5)))
level0.append(('DT', DecisionTreeClassifier(max_depth = 7)))
level0.append(('NB', GaussianNB()))
# Define meta learner model
level1 = KNeighborsClassifier(n_neighbors = 5)
# Define the stacking ensemble
model = StackingClassifier(estimators = level0, final_estimator = level1, cv = 4)
return model
# Evaluate a given model using cross-validation
def evaluate_model(model, x, y):
# Define cross validation parameters
cv = RepeatedStratifiedKFold(n_splits = 5, n_repeats = 4)
scores = cross_val_score(model, x, y, scoring = 'accuracy', cv = cv, n_jobs = -1, error_score = 'raise')
return scores
# Read CSV file into DataFrame
dataset = pd.read_csv('data/brain_tumor_dataset.csv', index_col = 0)
# Drop irrelevant features
dataset = dataset.drop(['image_name', 'label_name'], axis = 1)
# Split data into training and testing
x = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
models = get_models()
results, names = list(), list()
# Determine accuracies for each model
for name, model in models.items():
scores = evaluate_model(model, x, y)
results.append(scores)
names.append(name)
print('>%s %.4f' % (name, np.mean(scores)))