-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstacking_from_scratch.py
387 lines (299 loc) · 12.7 KB
/
stacking_from_scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# Import libraries
import pandas as pd
import numpy as np
from skimage import io
from skimage.io import imread, imshow
from skimage.transform import resize
from skimage.feature import greycomatrix, greycoprops
from scipy.stats import mode, kurtosis, skew, entropy
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from collections import Counter
import matplotlib.pyplot as plt
"""
Features Extraction Function
"""
# Get an image and returns first and second order features of the pixels array
def get_image_features(image_path):
# Load the image and converts it into a 2-dimensional numpy array with the pixels values
image = io.imread(image_path, as_gray = True) * 255
# Resize image to 512 x 512
image = resize(image, (512, 512))
# Converts the float values of the 2-dimensional pixels array into uint8
image = image.astype(np.uint8)
# Calculate the mean, variance and standard deviation of the 2-dimensional pixels array with numpy functions
mean = np.mean(image)
variance = np.var(image)
std = np.std(image)
# Converts the 2-dimensional pixels array into 1-dimensional
image_1da = image.flatten()
# Calculate the skewness, kurtosis and entropy of the 1-dimensional array with scipy.stats functions
skewness = skew(image_1da)
kurtos = kurtosis(image_1da)
entro = entropy(image_1da)
# Calculate the grey-level-co-ocurrence matrix with skimage functions
# The pixel pair distance offset used is 1
# The pixel pair angles used are 0, pi/4, pi/2 and 3pi/4
GLCM = greycomatrix(image, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4])
# Calculate texture properties of the grey-level-co-ocurrence matrix
contrast = greycoprops(GLCM, 'contrast')[0, 0]
dissimilarity = greycoprops(GLCM, 'dissimilarity')[0, 0]
homogeneity = greycoprops(GLCM, 'homogeneity')[0, 0]
asm = greycoprops(GLCM, 'ASM')[0, 0]
energy = greycoprops(GLCM, 'energy')[0, 0]
correlation = greycoprops(GLCM, 'correlation')[0, 0]
# Returns all the features values of the image
return mean, variance, std, skewness, kurtos, entro, contrast, dissimilarity, homogeneity, asm, energy, correlation
"""
K-Nearest Neighbors Algorithm Functions
"""
# Gets two points and calculate the euclidean distance between them
def euclidean_distance(p1, p2):
ed = np.sqrt(np.sum((p1 - p2) ** 2))
return ed
# Function to predict the class with knn model
def knn_predict(x_train, y_train, x_input, n_neighbors):
# List to store the predictions
predictions = []
# Loop through the datapoints to be classified
for i in x_input:
# List to store the distances
distances = []
# Loop through each training data
for j in range(len(x_train)):
# Calculate the euclidean distance
ed = euclidean_distance(np.array(x_train[j, :]), i)
# Add the calculated euclidean distance to the list
distances.append(ed)
# Convert the list into a numpy array
distances = np.array(distances)
# Sort the array while preserving the index
# Keep the first n_neighbors datapoints
dist_sorted = np.argsort(distances)[:n_neighbors]
# Labels of the n_neighbors datapoints from above
labels = y_train[dist_sorted]
# Determine the majority label in labels
label = mode(labels).mode[0]
predictions.append(label)
# Returns a list with the predictions
return predictions
"""
Decision Trees Algorithm Functions
"""
def entropy(y):
hist = np.bincount(y)
ps = hist / len(y)
return -np.sum([p * np.log2(p) for p in ps if p > 0])
class Node:
def __init__(
self, feature=None, threshold=None, left=None, right=None, *, value=None
):
self.feature = feature
self.threshold = threshold
self.left = left
self.right = right
self.value = value
def is_leaf_node(self):
return self.value is not None
class DecisionTree:
def __init__(self, min_samples_split=2, max_depth=100, n_feats=None):
self.min_samples_split = min_samples_split
self.max_depth = max_depth
self.n_feats = n_feats
self.root = None
def fit(self, X, y):
self.n_feats = X.shape[1] if not self.n_feats else min(self.n_feats, X.shape[1])
self.root = self._grow_tree(X, y)
def predict(self, X):
return np.array([self._traverse_tree(x, self.root) for x in X])
def _grow_tree(self, X, y, depth=0):
n_samples, n_features = X.shape
n_labels = len(np.unique(y))
# Stopping criteria
if (
depth >= self.max_depth
or n_labels == 1
or n_samples < self.min_samples_split
):
leaf_value = self._most_common_label(y)
return Node(value=leaf_value)
feat_idxs = np.random.choice(n_features, self.n_feats, replace=False)
# Greedily select the best split according to information gain
best_feat, best_thresh = self._best_criteria(X, y, feat_idxs)
# Grow the children that result from the split
left_idxs, right_idxs = self._split(X[:, best_feat], best_thresh)
left = self._grow_tree(X[left_idxs, :], y[left_idxs], depth + 1)
right = self._grow_tree(X[right_idxs, :], y[right_idxs], depth + 1)
return Node(best_feat, best_thresh, left, right)
def _best_criteria(self, X, y, feat_idxs):
best_gain = -1
split_idx, split_thresh = None, None
for feat_idx in feat_idxs:
X_column = X[:, feat_idx]
thresholds = np.unique(X_column)
for threshold in thresholds:
gain = self._information_gain(y, X_column, threshold)
if gain > best_gain:
best_gain = gain
split_idx = feat_idx
split_thresh = threshold
return split_idx, split_thresh
def _information_gain(self, y, X_column, split_thresh):
# Parent loss
parent_entropy = entropy(y)
# Generate split
left_idxs, right_idxs = self._split(X_column, split_thresh)
if len(left_idxs) == 0 or len(right_idxs) == 0:
return 0
# Compute the weighted avgerage of the loss for the children
n = len(y)
n_l, n_r = len(left_idxs), len(right_idxs)
e_l, e_r = entropy(y[left_idxs]), entropy(y[right_idxs])
child_entropy = (n_l / n) * e_l + (n_r / n) * e_r
# Information gain is difference in loss before vs. after split
ig = parent_entropy - child_entropy
return ig
def _split(self, X_column, split_thresh):
left_idxs = np.argwhere(X_column <= split_thresh).flatten()
right_idxs = np.argwhere(X_column > split_thresh).flatten()
return left_idxs, right_idxs
def _traverse_tree(self, x, node):
if node.is_leaf_node():
return node.value
if x[node.feature] <= node.threshold:
return self._traverse_tree(x, node.left)
return self._traverse_tree(x, node.right)
def _most_common_label(self, y):
counter = Counter(y)
most_common = counter.most_common(1)[0][0]
return most_common
"""
Naive Bayes Algorithm Functions
"""
def prior(df, class_column):
classes = sorted(list(df[class_column].unique()))
priors = []
for i in classes:
priors.append(len(df[df[class_column] == i]) / len(df))
return priors
def likelihood_gaussian(df, feat_name, feat_val, class_column, label):
feat = list(df.columns)
df = df[df[class_column] == label]
mean, std = df[feat_name].mean(), df[feat_name].std()
p_x_given_y = (1 / (np.sqrt(2 * np.pi) * std)) * np.exp(-((feat_val - mean) ** 2 / (2 * std ** 2)))
return p_x_given_y
def nb_predict(df, x_input, class_column):
features = list(df.columns)[:-1]
priors = prior(df, class_column)
predictions = []
for x in x_input:
labels = sorted(list(df[class_column].unique()))
likelihood = [1] * len(labels)
for j in range(len(labels)):
for i in range(len(features)):
likelihood[j] *= likelihood_gaussian(df, features[i], x[i], class_column, labels[j])
post_prob = [1] * len(labels)
for j in range(len(labels)):
post_prob[j] = likelihood[j] * priors[j]
predictions.append(np.argmax(post_prob))
return predictions
# Read CSV file into DataFrame
dataset = pd.read_csv('data/brain_tumor_dataset.csv', index_col = 0)
# Drop irrelevant features
dataset = dataset.drop(['image_name', 'label_name'], axis = 1)
# Split data into training and testing
train, test = train_test_split(dataset, test_size = 0.2)
x_train = train.iloc[:, :-1].values
y_train = train.iloc[:, -1].values
x_test = test.iloc[:, :-1].values
y_test = test.iloc[:, -1].values
print('Training...')
# Train and predict for KNN model
knn_preds = knn_predict(x_train, y_train, x_train, n_neighbors = 5)
knn_tests = knn_predict(x_train, y_train, x_test, n_neighbors = 5)
# Train and predict for NB model
nb_preds = nb_predict(train, x_train, class_column = 'label')
nb_tests = nb_predict(train, x_test, class_column = 'label')
# Train and predict for DTs model
dt = DecisionTree(max_depth = 7)
dt.fit(x_train, y_train)
dts_preds = dt.predict(x_train)
dts_tests = dt.predict(x_test)
# Create second level dataframe for meta model training with models predictions
meta_model_df = pd.DataFrame(columns = ('knn', 'dts', 'nb', 'true_label'))
meta_model_df['knn'] = knn_preds
meta_model_df['dts'] = dts_preds
meta_model_df['nb'] = nb_preds
meta_model_df['true_label'] = y_train
# Divide second level data into training and testing
train_mm, test_mm = train_test_split(meta_model_df, test_size = 0.2)
x_train_mm = train_mm.iloc[:, :-1].values
y_train_mm = train_mm.iloc[:, -1].values
x_test_mm = test_mm.iloc[:, :-1].values
y_test_mm = test_mm.iloc[:, -1].values
# Create dataframe for testing stacking model
stacking_test = pd.DataFrame(columns = ('knn', 'dts', 'nb', 'true_label'))
stacking_test['knn'] = knn_tests
stacking_test['dts'] = dts_tests
stacking_test['nb'] = nb_tests
stacking_test['true_label'] = y_test
x_test_s = stacking_test.iloc[:, :-1].values
y_test_s = stacking_test.iloc[:, -1].values
# Train and test meta model
knn_tests2 = knn_predict(x_train_mm, y_train_mm, x_test_mm, n_neighbors = 5)
s_tests = knn_predict(x_train_mm, y_train_mm, x_test_s, n_neighbors = 5)
# Determine models accuracy with cross validation
acc_knn = []
acc_nb = []
acc_dts = []
acc_s = []
for i in range(4):
train, test = train_test_split(dataset, test_size = 0.2)
x_train = train.iloc[:, :-1].values
y_train = train.iloc[:, -1].values
x_test = test.iloc[:, :-1].values
y_test = test.iloc[:, -1].values
knn_test = knn_predict(x_train, y_train, x_test, n_neighbors = 5)
nb_test = nb_predict(train, x_test, class_column = 'label')
dts_test = dt.predict(x_test)
stacking_test = pd.DataFrame(columns = ('knn', 'dts', 'nb', 'true_label'))
stacking_test['knn'] = knn_test
stacking_test['dts'] = dts_test
stacking_test['nb'] = nb_test
stacking_test['true_label'] = y_test
x_test_s = stacking_test.iloc[:, :-1].values
s_test = knn_predict(x_train_mm, y_train_mm, x_test_s, n_neighbors = 5)
acc_knn.append(accuracy_score(y_test, knn_test))
acc_nb.append(accuracy_score(y_test, nb_test))
acc_dts.append(accuracy_score(y_test, dts_test))
acc_s.append(accuracy_score(y_test, s_test))
# Print models accuracies
print('KNN: %.4f' % (np.mean(acc_knn)))
print('NB: %.4f' % (np.mean(acc_nb)))
print('DT: %.4f' % (np.mean(acc_dts)))
print('Stacking: %.4f' % (np.mean(acc_s)))
# Create new predictions
print('-------')
print('New prediction')
while True:
new_image = input('Image path: ')
features = np.array([get_image_features(new_image)])
knn_x = knn_predict(x_train, y_train, features, n_neighbors = 5)
dts_x = dt.predict(features)
nb_x = nb_predict(train, features, class_column = 'label')
new_p = np.array([[knn_x[0], dts_x[0], nb_x[0]]])
s_x = knn_predict(x_train_mm, y_train_mm, new_p, n_neighbors = 5)
print('No tumor = 0, Glioma tumor = 1, Meningioma tumor = 2, Pituitary tumor = 3')
print('KNN: ' + str(knn_x[0]))
print('NB: ' + str(nb_x[0]))
print('DT: ' + str(dts_x[0]))
print('Stacking: ' + str(s_x[0]))
if s_x[0] == 0:
print('Prediction = No tumor')
elif s_x[0] == 1:
print('Prediction = Glioma tumor')
elif s_x[0] == 2:
print('Prediction = Meningioma tumor')
else:
print('Prediction = Pituitary tumor')
print('\n')