-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExampleSound.cpp
535 lines (403 loc) · 14.2 KB
/
ExampleSound.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/*
* ExampleSound.cpp
*
* Created on: Apr 12, 2020
* Author: ans
*/
#include "ExampleSound.h"
// constructor
ExampleSound::ExampleSound()
: pixelSize(2),
waveResolution(10),
masterVolume(0.7),
maxVolume(0.8),
randomGenerator(Rand::RAND_ALGO_LEHMER32),
noiseGenerator(Rand::RAND_ALGO_LEHMER32),
commandsToIntermediary(maxSoundWaves),
soundWavesToAudioThread(maxSoundWaves),
indexNextSoundWaveIntermediary(0),
indexNextSoundWaveAudioThread(0),
isClearSoundWaves(false),
numSoundWaves(0) {
// setup random generators
this->randomGenerator.setRealLimits(0.1, 1.5); // wave lengths between 0.1 and 1.5 seconds
this->randomGenerator.setByteLimits(0, 47); // 48 tones over three octaves
this->noiseGenerator.setRealLimits(-1., 1.);
}
// destructor
ExampleSound::~ExampleSound() {}
// run the application
int ExampleSound::run(int argc, char * argv[]) {
UNUSED(argc);
UNUSED(argv);
// setup the engine
const std::string name("sound");
constexpr int width = 800;
constexpr int height = 600;
this->setClearBuffer(true);
this->setPixelSize(this->pixelSize);
this->createMainWindow(width, height, name);
// setup the sound system
this->soundSystem.setOutputStreamName(name);
this->soundSystem.setOutputFunction(
std::bind(
&ExampleSound::generateSound,
this,
std::placeholders::_1,
std::placeholders::_2,
true
)
);
// run the engine
this->Engine::run();
return EXIT_SUCCESS;
}
// set the general master volume (default: 0.7)
void ExampleSound::setMasterVolume(double master) {
if(master < 0.)
throw std::runtime_error("Invalid master volume");
if(master > 1.)
this->masterVolume = 1.;
else
this->masterVolume = master;
}
// set the maximum volume for clipping (default: 0.8)
void ExampleSound::setMaxVolume(double max) {
if(max < 0.)
throw std::runtime_error("Invalid maximum volume");
if(max > 0.995)
this->maxVolume = 0.995;
else
this->maxVolume = max;
}
// create resources
void ExampleSound::onCreate() {
// start the sound system
this->soundSystem.start(this->getTime());
// wait for the sound system to be ready
while(!(this->soundSystem.isStarted()))
std::this_thread::yield();
// query for information about the sound output and print it to stdout
std::cout << "device=" << this->soundSystem.getOutputDeviceName() << std::endl;
std::cout << "samplerate=" << this->soundSystem.getOutputSampleRate() << std::endl;
const auto latency = this->soundSystem.getOutputLatency();
if(latency > 0.)
std::cout << "latency=" << latency << "s" << std::endl;
else
std::cout << "latency=<unknown>" << std::endl;
std::cout << "layout=" << this->soundSystem.getOutputLayoutName() << std::endl;
const auto channels = this->soundSystem.getOutputChannels();
std::cout << "channels=" << channels << std::endl;
for(auto channel = 0; channel < channels; ++channel)
std::cout << "\t#" << channel << ": " << this->soundSystem.getOutputChannelName(channel) << std::endl;
// start intermediary thread
this->intermediary = std::thread(&ExampleSound::threadIntermediary, this);
}
// update frame
void ExampleSound::onUpdate(double elapsedTime) {
UNUSED(elapsedTime);
const double currentTime = this->getTime();
// render sound wave
const auto w = this->getWindowWidth();
const auto h = this->getWindowHeight();
const double res = static_cast<double>(this->waveResolution) / 1000.;
const double halfHeight = static_cast<double>(h) / 2;
for(int x = 0; x < w; ++x) {
const double sound = this->generateSound(0, currentTime + static_cast<double>(x) / w * res);
int yFrom = static_cast<int>(std::lround(halfHeight));
int yTo = static_cast<int>(std::lround(halfHeight + sound * halfHeight));
bool swapped = false;
if(yFrom > yTo) {
using std::swap;
swap(yFrom, yTo);
swapped = true;
}
for(int y = yFrom; y <= yTo; ++y) {
double red = 0.;
if(swapped)
red = static_cast<double>(yTo - y) / halfHeight;
else
red = static_cast<double>(y - yFrom) / halfHeight;
this->draw(
x,
y,
static_cast<unsigned char>(std::lround(255 * red)),
static_cast<unsigned char>(std::lround(255 - 255 * red)),
0
);
}
}
// check for errors
std::string writingError, errorString;
if(this->soundSystem.isOutputUnderflowOccured())
errorString = ", UNDERFLOW ERROR";
else if(this->soundSystem.isOutputWritingErrorsOccured(writingError))
errorString += ", ERROR: " + writingError;
// show number of sound waves and current wave resolution
this->setDebugText(
"n="
+ std::to_string(this->numSoundWaves)
+ ", res="
+ std::to_string(this->waveResolution)
+ "ms"
+ errorString
);
// handle RIGHT/LEFT arrow keys for changing the resolution of the displayed sound wave
if(this->isKeyPressed(GLFW_KEY_RIGHT) && this->waveResolution < 100)
++(this->waveResolution);
if(this->isKeyRepeated(GLFW_KEY_RIGHT) && this->waveResolution < 100)
++(this->waveResolution);
if(this->isKeyPressed(GLFW_KEY_LEFT) && this->waveResolution > 1)
--(this->waveResolution);
if(this->isKeyRepeated(GLFW_KEY_LEFT) && this->waveResolution > 1)
--(this->waveResolution);
std::vector<Command> commands;
// handle ENTER key for adding a sine wave
if(this->isKeyPressed(GLFW_KEY_ENTER))
commands.emplace_back(ACTION_ADD_SINE);
if(this->isKeyRepeated(GLFW_KEY_ENTER))
commands.emplace_back(ACTION_ADD_SINE);
// handle SPACE key for adding a square wave
if(this->isKeyPressed(GLFW_KEY_SPACE))
commands.emplace_back(ACTION_ADD_SQUARE);
if(this->isKeyRepeated(GLFW_KEY_SPACE))
commands.emplace_back(ACTION_ADD_SQUARE);
// handle TAB key for adding a triangle wave
if(this->isKeyPressed(GLFW_KEY_TAB))
commands.emplace_back(ACTION_ADD_TRIANGLE);
if(this->isKeyRepeated(GLFW_KEY_TAB))
commands.emplace_back(ACTION_ADD_TRIANGLE);
// handle BACKSPACE key for adding a sawtooth wave
if(this->isKeyPressed(GLFW_KEY_BACKSPACE))
commands.emplace_back(ACTION_ADD_SAWTOOTH);
if(this->isKeyRepeated(GLFW_KEY_BACKSPACE))
commands.emplace_back(ACTION_ADD_SAWTOOTH);
// handle N key for adding noise
if(this->isKeyPressed(GLFW_KEY_N))
commands.emplace_back(ACTION_ADD_NOISE);
if(this->isKeyRepeated(GLFW_KEY_N))
commands.emplace_back(ACTION_ADD_NOISE);
// handle ESCAPE key for removing all sound waves
if(this->isKeyPressed(GLFW_KEY_ESCAPE))
commands.emplace_back(ACTION_CLEAR);
if(this->isKeyRepeated(GLFW_KEY_ESCAPE))
commands.emplace_back(ACTION_CLEAR);
// send commands to intermediary thread
if(!commands.empty())
this->commandsToIntermediary.push(commands);
// handle UP/DOWN arrow keys for changing the 'pixel' size
const unsigned short oldPixelSize = this->pixelSize;
if(this->isKeyPressed(GLFW_KEY_UP) && this->pixelSize < 100)
++(this->pixelSize);
if(this->isKeyRepeated(GLFW_KEY_UP) && this->pixelSize < 100)
++(this->pixelSize);
if(this->isKeyPressed(GLFW_KEY_DOWN) && this->pixelSize > 1)
--(this->pixelSize);
if(this->isKeyRepeated(GLFW_KEY_DOWN) && this->pixelSize > 1)
--(this->pixelSize);
if(this->pixelSize != oldPixelSize)
this->setPixelSize(this->pixelSize);
// handle F10-F12 keys for changing the rendering mode
const auto currentRenderingMode = this->getRenderingMode();
auto newRenderingMode = currentRenderingMode;
if(this->isKeyPressed(GLFW_KEY_F10))
newRenderingMode = MainWindow::RENDERING_MODE_PBO;
if(this->isKeyPressed(GLFW_KEY_F11))
newRenderingMode = MainWindow::RENDERING_MODE_POINTS;
if(this->isKeyPressed(GLFW_KEY_F12))
newRenderingMode = MainWindow::RENDERING_MODE_TEXTURE;
if(newRenderingMode != currentRenderingMode)
this->setRenderingMode(newRenderingMode);
}
// clear resources
void ExampleSound::onDestroy() {
// stop the sound system
this->soundSystem.stop();
// wait for the intermediary thread
Command quit(ACTION_QUIT);
this->commandsToIntermediary.push(quit);
if(this->intermediary.joinable())
this->intermediary.join();
// clear buffers
this->commandsToIntermediary.clear();
this->soundWavesToAudioThread.clear();
}
// intermediary thread for creating sound waves
void ExampleSound::threadIntermediary() {
bool running = true;
do {
// get commands
std::vector<Command> commands;
this->commandsToIntermediary.pop(commands);
for(const auto& command : commands) {
switch(command.action) {
case ACTION_NONE:
break;
case ACTION_ADD_SINE:
this->addSoundWave(SoundWave::SOUNDWAVE_SINE);
break;
case ACTION_ADD_SQUARE:
this->addSoundWave(SoundWave::SOUNDWAVE_TRIANGLE);
break;
case ACTION_ADD_TRIANGLE:
this->addSoundWave(SoundWave::SOUNDWAVE_TRIANGLE);
break;
case ACTION_ADD_SAWTOOTH:
/*
* NOTE: It might be better to use SoundWave::SOUNDWAVE_SAWTOOTH_OPTIMIZED,
* for sawtooth waves. Otherwise there might be 'underflow' warnings
* and choppy sound when computing too many sawtooth waves in parallel
* due to their very high calculation time involving multiple sinuses.
* Adjust analogSawToothN in SoundWave::get() to change the necessary
* computations per sample (analogSawToothN * Math::approxSinQuad(...)).
*/
this->addSoundWave(SoundWave::SOUNDWAVE_SAWTOOTH);
break;
case ACTION_ADD_NOISE:
this->addSoundWave(SoundWave::SOUNDWAVE_NOISE_PRECALCULATED);
break;
case ACTION_CLEAR:
this->clearSoundWaves();
break;
case ACTION_QUIT:
running = false;
break;
default:
throw std::runtime_error("Unknown command: " + std::to_string(command.action));
}
}
// yield some time to other threads
std::this_thread::yield();
} while(running);
}
// add a sound wave
void ExampleSound::addSoundWave(SoundWave::Type type) {
// generate semi-random frequency and random length
constexpr double octaveBase = 110.;
constexpr double twelfthRootOf2 = std::pow(2., 1. / 12.);
const double frequency = octaveBase * std::pow(twelfthRootOf2, this->randomGenerator.generateByte());
const double length = this->randomGenerator.generateReal();
// save start time
const double start = this->getTime();
// set noise resolution (i.e. the percentage of actually pre-calculated samples)
constexpr double noiseResolution = 1.;
// set your envelope here
//const SoundEnvelope envelope(SoundEnvelope::ADSRTimes(0., length, 0.), 1., 0.);
const SoundEnvelope envelope(SoundEnvelope::ADRTimes(0.1, 0.01, 0.2), 1., 0.8);
// generate noise if necessary
std::vector<double> noise;
double samplesPerSecond = 0.;
if(type == SoundWave::SOUNDWAVE_NOISE_PRECALCULATED) {
samplesPerSecond = this->soundSystem.getOutputSampleRate() / (length + envelope.getADRTimes().decayTime);
const auto samples =
static_cast<std::size_t>(
(length + envelope.getADRTimes().releaseTime) * samplesPerSecond * noiseResolution
) + 1;
noise.reserve(samples);
for(std::size_t n = 0; n < samples; ++n)
noise.push_back(this->noiseGenerator.generateReal());
}
// add sound wave to the circular buffer for the sound thread and play it "immediately"
SoundWave soundWaveForThread(
SoundWave::Properties(type, frequency, length, start),
envelope,
nullptr,
&noise,
samplesPerSecond
);
soundWaveForThread.start(start);
// try to add the sound wave to the circular buffer that communicates with the sound thread
// as long as the buffer still has capacity (i.e. is not cleared),
while(
!(this->soundWavesToAudioThread.push(soundWaveForThread))
&& this->soundWavesToAudioThread.capacity()
) std::this_thread::yield(); // in the meantime, yield some execution time to other threads
{
// lock sound waves for intermediary thread
std::lock_guard<std::mutex> accessToIntermediary(this->lock);
// add sound wave to the intermediary thread and render it immediately
SoundWave newSoundWave(
SoundWave::Properties(type, frequency, length, start),
envelope,
nullptr,
&noise,
samplesPerSecond
);
newSoundWave.start(start);
using std::swap;
swap(newSoundWave, this->soundWavesForIntermediary[this->indexNextSoundWaveIntermediary]);
++(this->indexNextSoundWaveIntermediary);
if(this->indexNextSoundWaveIntermediary == ExampleSound::maxSoundWaves)
this->indexNextSoundWaveIntermediary = 0;
}
}
// clear all sound waves
void ExampleSound::clearSoundWaves() {
// clear data for the intermediary thread
for(unsigned char i = 0; i < ExampleSound::maxSoundWaves; ++i)
this->soundWavesForIntermediary[i].clear();
// notify the sound thread to clear its data
this->isClearSoundWaves.store(true);
}
// generate sound at the specified time
double ExampleSound::generateSound(unsigned int channel, double time, bool forAudioThread) {
UNUSED(channel);
if(forAudioThread) { /* inside the audio thread */
// add new sound wave
if(this->soundWavesToAudioThread.pop(this->soundWavesForAudioThread[this->indexNextSoundWaveAudioThread])) {
++(this->indexNextSoundWaveAudioThread);
if(this->indexNextSoundWaveAudioThread == ExampleSound::maxSoundWaves)
this->indexNextSoundWaveAudioThread = 0;
}
bool changeIfValueIs = true;
if(
this->isClearSoundWaves.compare_exchange_weak(
changeIfValueIs,
false,
std::memory_order_relaxed,
std::memory_order_release
)
)
// clear all sound waves
for(unsigned char i = 0; i < ExampleSound::maxSoundWaves; ++i)
this->soundWavesForAudioThread[i].clear();
return this->generateSoundFrom(
time,
this->soundWavesForAudioThread,
ExampleSound::maxSoundWaves
);
}
// in main thread: only render the new value if access to the data of the intermediary thread is given
{
std::unique_lock<std::mutex> accessToIntermediary(this->lock, std::try_to_lock);
if(accessToIntermediary.owns_lock())
return this->generateSoundFrom(
time,
this->soundWavesForIntermediary,
ExampleSound::maxSoundWaves,
true
);
}
return 0.;
}
// generate sound at the specified time from the specified source
double ExampleSound::generateSoundFrom(double time, SoundWave * from, std::size_t n, bool count) {
if(!n)
return 0.;
if(count)
this->numSoundWaves = 0;
// mixing
double result = 0.;
for(std::size_t i = 0; i < n; ++i)
if(from[i].exists()) {
result += this->masterVolume * from[i].get(time);
if(count)
++(this->numSoundWaves);
}
// clipping
if(result > this->maxVolume)
result = this->maxVolume;
if(result < - this->maxVolume)
result = - this->maxVolume;
return result;
}