-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_vet_features.py
56 lines (42 loc) · 1.43 KB
/
extract_vet_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from keras.applications import resnet50
from keras.preprocessing import image
from keras.models import Model
from keras.layers.pooling import GlobalMaxPooling2D, GlobalAveragePooling2D
import keras.backend as K
import numpy as np
import pickle
directory = 'VET Raw'
nPixels = 224
X = []
images = []
for subdir, dirs, files in os.walk(directory):
dirs.sort()
for file in sorted(files):
if file.endswith(".bmp"):
images.append(file)
img = image.load_img(os.path.join(subdir, file), target_size=(nPixels, nPixels))
x = image.img_to_array(img)
X.append(x)
X = np.stack(X)
X = resnet50.preprocess_input(X)
feature_sets = {}
layers = ['activation_{}'.format(i) for i in range(1, 50)] + ['fc1000']
for layer in layers:
feature_sets[layer] = {}
base_model = resnet50.ResNet50()
x = base_model.get_layer(layer).output
if layer != 'fc1000':
x = GlobalAveragePooling2D()(x)
model = Model(inputs=base_model.input, outputs=x)
feature_sets[layer]= model.predict(X)
K.clear_session() #just to be safe
image_features = {}
for i, image in enumerate(images):
image_features[image] = {}
for j, layer in enumerate(layers):
image_features[image][j] = feature_sets[layer][i]
with open('resnet50_features.pkl', 'wb') as file:
pickle.dump(image_features, file)