-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
128 lines (93 loc) · 5.07 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -*- coding: utf-8 -*-
# @__ramraj__
from __future__ import division, print_function, absolute_import
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
SRC_NIFTY_DIR = '../BraTS17/HGG/**/'
DST_JPG_DIR = './BRATS/HGG/'
MODALITY_DICT = {'flair': 0, 't1': 1, 't1s': 2, 't2': 3, 'gt': 4}
MODALITY = 't1'
IMG_MODE = 'reg'
TASK = 'all'
# For step2_write_tfrecord
TF_IMG_SRC = './BRATS/HGG/t1/reg_JPG/*'
""" AFFECTS HOW CODE RUNS"""
tf.app.flags.DEFINE_string('model', 'basic',
""" Defining what version of the model to run """)
# Training
tf.app.flags.DEFINE_string('log_dir', "./ckpt_dir", # Training is default on, unless testing or finetuning is set to "True"
""" dir to store training ckpt """)
# tf.app.flags.DEFINE_integer('max_steps', "60000",
# """ max_steps for training """)
# Testing
tf.app.flags.DEFINE_boolean('testing', False, # True or False
""" Whether to run test or not """)
tf.app.flags.DEFINE_string('model_ckpt_dir', "./ckpt/model.ckpt-1800",
""" checkpoint file for model to use for testing """)
tf.app.flags.DEFINE_boolean('save_image', True,
""" Whether to save predicted image """)
tf.app.flags.DEFINE_string('res_output_dir', "./result_imgs",
""" Directory to save result images when running test """)
# Finetuning
tf.app.flags.DEFINE_boolean('finetune', False, # True or False
""" Whether to finetune or not """)
tf.app.flags.DEFINE_string('finetune_dir', './ckpt/model.ckpt-1800',
""" Path to the checkpoint file to finetune from """)
""" TRAINING PARAMETERS"""
tf.app.flags.DEFINE_integer('batch_size', "64",
""" train batch_size """)
tf.app.flags.DEFINE_integer('test_batch_size', "1",
""" batch_size for training """)
tf.app.flags.DEFINE_integer('eval_batch_size', "6",
""" Eval batch_size """)
tf.app.flags.DEFINE_float('balance_weight_0', 0.8,
""" Define the dataset balance weight for class 0 - Not building """)
tf.app.flags.DEFINE_float('balance_weight_1', 1.1,
""" Define the dataset balance weight for class 1 - Building """)
""" DATASET SPECIFIC PARAMETERS """
# Directories
# tf.app.flags.DEFINE_string('train_dir', "../BRATS/HGG/",
# """ path to training images """)
# tf.app.flags.DEFINE_string('test_dir', "../BRATS/HGG/",
# """ path to test image """)
# tf.app.flags.DEFINE_string('val_dir', "../BRATS/HGG/",
# """ path to val image """)
# Dataset size. #Epoch = one pass of the whole dataset.
tf.app.flags.DEFINE_integer('num_epochs', "10000",
""" num of epochs on train training """)
tf.app.flags.DEFINE_integer('num_examples_epoch_train', "3500",
""" num examples per epoch for train """)
tf.app.flags.DEFINE_integer('num_examples_epoch_test', "500",
""" num examples per epoch for test """)
tf.app.flags.DEFINE_integer('num_examples_epoch_val', "50",
""" num examples per epoch for test """)
tf.app.flags.DEFINE_float('fraction_of_examples_in_queue', "0.1",
""" Fraction of examples from datasat to put in queue. Large datasets need smaller value, otherwise memory gets full. """)
# Image size and classes
tf.app.flags.DEFINE_integer('image_h', "176",
""" image height """)
tf.app.flags.DEFINE_integer('image_w', "176",
""" image width """)
tf.app.flags.DEFINE_integer('image_c', "1",
""" number of image channels (RGB) (the depth) """)
tf.app.flags.DEFINE_integer('num_class', "2", # classes are "Building" and "Not building"
""" total class number """)
# FOR TESTING:
TEST_ITER = FLAGS.num_examples_epoch_test // FLAGS.batch_size
tf.app.flags.DEFINE_float('moving_average_decay', "0.99", # "0.9999", #https://www.tensorflow.org/versions/r0.12/api_docs/python/train/moving_averages
""" The decay to use for the moving average""")
if(FLAGS.model == "basic" or FLAGS.model == "basic_dropout"):
tf.app.flags.DEFINE_string('conv_init', 'xavier', # xavier / var_scale
""" Initializer for the convolutional layers. One of: "xavier", "var_scale". """)
tf.app.flags.DEFINE_string('optimizer', "SGD",
""" Optimizer for training. One of: "adam", "SGD", "momentum", "adagrad". """)
train_n_batches = int(FLAGS.num_examples_epoch_train / FLAGS.batch_size)
test_n_batches = int(FLAGS.num_examples_epoch_test / FLAGS.test_batch_size)
n_train_steps = FLAGS.num_epochs * train_n_batches
NUM_EXAMPLES_PER_EPOCH_FOR_TEST = FLAGS.num_examples_epoch_test
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = FLAGS.num_examples_epoch_train
# FLAGS.image_h
ORIG_SIZE = 184
IMAGE_SIZE = 184
N_EPOCHS = FLAGS.num_epochs
TEST_SPLIT = 0.2