forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
smc_lj_module.f90
283 lines (227 loc) · 11.6 KB
/
smc_lj_module.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
! smc_lj_module.f90
! Energy, force, and move routines for SMC, LJ potential
MODULE smc_module
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
USE, INTRINSIC :: iso_fortran_env, ONLY : output_unit, error_unit
IMPLICIT NONE
PRIVATE
! Public routines
PUBLIC :: introduction, conclusion, allocate_arrays, deallocate_arrays
PUBLIC :: force, force_1
! Public data
INTEGER, PUBLIC :: n ! Number of atoms
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: r ! Positions (3,n)
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: r_old ! Old positions (3,n)
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: v ! Velocities (3,n)
REAL, DIMENSION(:), ALLOCATABLE, PUBLIC :: zeta ! Random numbers (n)
LOGICAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: move ! Mask for multi-atom moves (3,n)
! Private data
INTEGER, PARAMETER :: lt = -1, gt = 1 ! Options for j-range
! Public derived type
! At the time of writing gfortran, and some other compilers, do not implement
! parameterized derived types (part of the Fortran 2003 standard);
! hence the rather clumsy use of the n_max parameter here.
INTEGER, PARAMETER :: n_max = 256
TYPE, PUBLIC :: potential_type ! A composite variable for interactions comprising
REAL :: pot ! the cut-and-shifted potential energy and
REAL :: cut ! the cut (but not shifted) potential energy and
REAL :: vir ! the virial and
REAL :: lap ! the Laplacian
REAL, DIMENSION(3,n_max) :: f ! the forces and
LOGICAL :: ovr ! a flag indicating overlap (i.e. pot too high to use)
CONTAINS
PROCEDURE :: add_potential_type
PROCEDURE :: subtract_potential_type
GENERIC :: OPERATOR(+) => add_potential_type
GENERIC :: OPERATOR(-) => subtract_potential_type
END TYPE potential_type
CONTAINS
FUNCTION add_potential_type ( a, b ) RESULT (c)
IMPLICIT NONE
TYPE(potential_type) :: c ! Result is the sum of the two inputs
CLASS(potential_type), INTENT(in) :: a, b
c%pot = a%pot + b%pot
c%cut = a%cut + b%cut
c%vir = a%vir + b%vir
c%lap = a%lap + b%lap
c%f = a%f + b%f
c%ovr = a%ovr .OR. b%ovr
END FUNCTION add_potential_type
FUNCTION subtract_potential_type ( a, b ) RESULT (c)
IMPLICIT NONE
TYPE(potential_type) :: c ! Result is the difference of the two inputs
CLASS(potential_type), INTENT(in) :: a, b
c%pot = a%pot - b%pot
c%cut = a%cut - b%cut
c%vir = a%vir - b%vir
c%lap = a%lap - b%lap
c%f = a%f - b%f
c%ovr = a%ovr .OR. b%ovr ! This is meaningless but inconsequential
END FUNCTION subtract_potential_type
SUBROUTINE introduction
IMPLICIT NONE
WRITE ( unit=output_unit, fmt='(a)' ) 'Lennard-Jones potential'
WRITE ( unit=output_unit, fmt='(a)' ) 'Cut-and-shifted version for SMC dynamics'
WRITE ( unit=output_unit, fmt='(a)' ) 'Cut (but not shifted) version also calculated'
WRITE ( unit=output_unit, fmt='(a)' ) 'Diameter, sigma = 1'
WRITE ( unit=output_unit, fmt='(a)' ) 'Well depth, epsilon = 1'
END SUBROUTINE introduction
SUBROUTINE conclusion
IMPLICIT NONE
WRITE ( unit=output_unit, fmt='(a)') 'Program ends'
END SUBROUTINE conclusion
SUBROUTINE allocate_arrays ( box, r_cut )
IMPLICIT NONE
REAL, INTENT(in) :: box ! Simulation box length
REAL, INTENT(in) :: r_cut ! Potential cutoff distance
REAL :: r_cut_box
IF ( n > n_max ) THEN
WRITE ( unit=error_unit, fmt='(a,2i5)' ) 'n too large ', n, n_max
STOP 'Error in allocate_arrays'
END IF
ALLOCATE ( r(3,n), r_old(3,n), v(3,n), zeta(n), move(3,n) )
r_cut_box = r_cut / box
IF ( r_cut_box > 0.5 ) THEN
WRITE ( unit=error_unit, fmt='(a,f15.6)' ) 'r_cut/box too large ', r_cut_box
STOP 'Error in allocate_arrays'
END IF
END SUBROUTINE allocate_arrays
SUBROUTINE deallocate_arrays
IMPLICIT NONE
DEALLOCATE ( r, r_old, v, zeta, move )
END SUBROUTINE deallocate_arrays
FUNCTION force ( box, r_cut ) RESULT ( total )
IMPLICIT NONE
TYPE(potential_type) :: total ! Returns composite of forces, pot, vir etc
REAL, INTENT(in) :: box ! Simulation box length
REAL, INTENT(in) :: r_cut ! Potential cutoff distance
! total%pot is the total cut-and-shifted potential energy for whole system
! total%cut is the total cut (but not shifted) version of the above
! total%vir is the total virial for whole system
! total%lap is the total Laplacian for whole system
! total%f contains the forces on all the atoms
! total%ovr is a flag indicating overlap (potential too high) to avoid overflow
! If this flag is .true., the values of total%pot etc should not be used
! Actual calculation is performed by function force_1
INTEGER :: i
TYPE(potential_type) :: partial ! atomic contributions to total
! Initialize
total = potential_type ( f=0.0, pot=0.0, cut=0.0, vir=0.0, lap=0.0, ovr=.FALSE. )
DO i = 1, n - 1 ! Begin loop over atoms
partial = force_1 ( i, box, r_cut, gt )
IF ( partial%ovr ) THEN
total%ovr = .TRUE. ! Overlap detected
RETURN ! Return immediately
END IF
total = total + partial
END DO ! End loop over atoms
total%ovr = .FALSE. ! No overlaps detected (redundant but for clarity)
END FUNCTION force
FUNCTION force_1 ( i, box, r_cut, j_range ) RESULT ( partial )
IMPLICIT NONE
TYPE(potential_type) :: partial ! Returns composite of forces, pot etc for one atom
INTEGER, INTENT(in) :: i ! Index of atom of interest
REAL, INTENT(in) :: box ! Simulation box length
REAL, INTENT(in) :: r_cut ! Potential cutoff distance
INTEGER, OPTIONAL, INTENT(in) :: j_range ! Optional partner index range
! partial%pot is the cut-and-shifted potential energy of atom i with a set of other atoms
! partial%cut is the cut (but not shifted) version of the above
! partial%vir is the corresponding virial of atom i
! partial%lap is the corresponding Laplacian of atom i
! partial%f contains the force on i and the reaction forces on all other atoms due to i
! partial%ovr is a flag indicating overlap (potential too high) to avoid overflow
! If this is .true., the values of partial%pot etc should not be used
! The optional argument j_range restricts partner indices to j>i, or j<i
! It is assumed that positions are in units where box = 1
! Forces are calculated in units where sigma = 1 and epsilon = 1
! Note that we use a shifted LJ potential here
INTEGER :: j, j1, j2, ncut
REAL :: r_cut_box, r_cut_box_sq, box_sq
REAL :: rij_sq, sr2, sr6, sr12, cutij, virij, lapij
REAL, DIMENSION(3) :: rij, fij
REAL, PARAMETER :: sr2_ovr = 1.77 ! overlap threshold (pot > 100)
IF ( PRESENT ( j_range ) ) THEN
SELECT CASE ( j_range )
CASE ( lt ) ! j < i
j1 = 1
j2 = i-1
CASE ( gt ) ! j > i
j1 = i+1
j2 = n
CASE default ! should never happen
WRITE ( unit = error_unit, fmt='(a,i10)') 'j_range error ', j_range
STOP 'Impossible error in force1'
END SELECT
ELSE
j1 = 1
j2 = n
END IF
r_cut_box = r_cut / box
r_cut_box_sq = r_cut_box ** 2
box_sq = box ** 2
! Initialize
partial = potential_type ( f=0.0, pot=0.0, cut=0.0, vir=0.0, lap=0.0, ovr=.FALSE. )
ncut = 0
DO j = j1, j2 ! Begin loop over atoms
IF ( j == i ) CYCLE ! Skip self
rij(:) = r(:,i) - r(:,j) ! Separation vector
rij(:) = rij(:) - ANINT ( rij(:) ) ! Periodic boundary conditions in box=1 units
rij_sq = SUM ( rij**2 ) ! Squared separation
IF ( rij_sq < r_cut_box_sq ) THEN ! Check within cutoff
rij_sq = rij_sq * box_sq ! Now in sigma=1 units
rij(:) = rij(:) * box ! Now in sigma=1 units
sr2 = 1.0 / rij_sq
IF ( sr2 > sr2_ovr ) THEN
partial%ovr = .TRUE. ! Overlap detected
RETURN ! Return immediately
END IF
sr6 = sr2 ** 3
sr12 = sr6 ** 2
cutij = sr12 - sr6 ! LJ pair potential (cut but not shifted)
virij = cutij + sr12 ! LJ pair virial
lapij = ( 22.0*sr12 - 5.0*sr6 ) * sr2 ! LJ pair Laplacian
fij = rij * virij / rij_sq ! LJ pair force
partial%cut = partial%cut + cutij
partial%vir = partial%vir + virij
partial%lap = partial%lap + lapij
partial%f(:,i) = partial%f(:,i) + fij
partial%f(:,j) = partial%f(:,j) - fij
ncut = ncut + 1
END IF ! End check within cutoff
END DO ! End inner loop over atoms
! Calculate shifted potential
sr2 = 1.0 / r_cut**2 ! in sigma=1 units
sr6 = sr2 ** 3
sr12 = sr6 **2
cutij = sr12 - sr6
partial%pot = partial%cut - REAL ( ncut ) * cutij
! Multiply results by numerical factors
partial%f = partial%f * 24.0
partial%pot = partial%pot * 4.0
partial%cut = partial%cut * 4.0
partial%vir = partial%vir * 24.0 / 3.0
partial%lap = partial%lap * 24.0 * 2.0
partial%ovr = .FALSE. ! No overlaps detected (redundant but for clarity)
END FUNCTION force_1
END MODULE smc_module