forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mc_chain_wl_sw.f90
431 lines (340 loc) · 18.7 KB
/
mc_chain_wl_sw.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
! mc_chain_wl_sw.f90
! Monte Carlo, single chain, Wang-Landau, square wells
PROGRAM mc_chain_wl_sw
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a configuration of atom positions in a linear chain
! NO periodic boundary conditions, no box
! Conducts Monte Carlo, Wang-Landau method, using various moves
! such as CBMC regrowth, pivot, crankshaft
! Uses no special neighbour lists
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! Input configuration, output configuration, all calculations, and all results
! are given in simulation units defined by the model:
! atomic core diameter sigma = 1, well-depth epsilon=1
! Energy is -q, where q is the total number of attractive well interactions
! This is a negative integer, but for convenience we refer to q as energy
! Configurational weights are calculated on the basis of the athermal interactions
! only, i.e. weight=1 if no overlap, weight=0 if any overlap
! In this program, the flatness of the h(q) histogram is checked at the end of every block
! A stage consists of many blocks, during which the entropy is adjusted by a value ds
! The stage is deemed to be finished when h(q) is sufficiently flat
! At the end of each stage, the histograms are printed and reset, and ds is divided by 2
! The model is the same one studied by
! MP Taylor, W Paul, K Binder, J Chem Phys, 131, 114907 (2009)
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor
USE config_io_module, ONLY : read_cnf_atoms, write_cnf_atoms
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE mc_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, &
& regrow, crank, pivot, qcount, weight, n, r
IMPLICIT NONE
! Most important variables
REAL :: bond ! bond length (in units of core diameter)
REAL :: range ! range of attractive well (specified, same units)
INTEGER :: m_max ! maximum atoms in regrow
INTEGER :: k_max ! number of random tries per atom in regrow
REAL :: crank_max ! maximum move angle in crankshaft
REAL :: crank_fraction ! fraction of atoms to try in crankshaft per step
INTEGER :: n_crank ! number of crankshaft tries per step
REAL :: pivot_max ! maximum move angle in pivot
REAL :: pivot_fraction ! fraction of atoms to try in pivot per step
INTEGER :: n_pivot ! number of pivot tries per step
INTEGER :: q ! total attractive interaction (negative of energy)
INTEGER :: q_min ! min value of q seen in simulation (maximum energy)
INTEGER :: q_max ! max value of q seen in simulation (minimum energy)
REAL :: flatness ! flatness criterion
LOGICAL :: flat ! Flag indicating that histogram is flat
INTEGER :: nstep ! Steps per block (at end of which we do flatness check)
INTEGER :: stage ! Counts stages in entropy function refinement
INTEGER :: nstage ! Determines termination point for run
REAL :: ds ! Entropy increment for Wang-Landau method
INTEGER :: nq ! Maximum anticipated q
! Histograms and tables
REAL, DIMENSION(:), ALLOCATABLE :: h ! Histogram of q values (0:nq)
REAL, DIMENSION(:), ALLOCATABLE :: g ! Histogram of radius of gyration (0:nq)
REAL, DIMENSION(:), ALLOCATABLE :: s ! Entropy histogram used in acceptance (0:nq)
REAL, DIMENSION(:), ALLOCATABLE :: e ! Energy histogram
INTEGER :: blk, stp, ioerr, try, n_acc
LOGICAL :: accepted
REAL :: r_ratio, c_ratio, p_ratio
CHARACTER(len=4), PARAMETER :: cnf_prefix = 'cnf.'
CHARACTER(len=4), PARAMETER :: his_prefix = 'his.'
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with stage number
NAMELIST /nml/ nstep, nstage, m_max, k_max, crank_max, crank_fraction, pivot_max, pivot_fraction, &
& range, flatness
WRITE ( unit=output_unit, fmt='(a)' ) 'mc_chain_wl_sw'
WRITE ( unit=output_unit, fmt='(a)' ) 'Monte Carlo, Wang-Landau method, chain molecule, square wells'
CALL introduction
CALL RANDOM_SEED () ! Initialize random number generator
! Set sensible default run parameters for testing
nstage = 20 ! 2**(-20) = approx 10**(-6) for smallest modification factor
nstep = 10000 ! number of steps per block
m_max = 3 ! maximum atoms in regrow
k_max = 32 ! number of random tries per atom in regrow
crank_max = 0.5 ! maximum move angle in crankshaft
crank_fraction = 0.5 ! fraction of atoms to try in crank moves
pivot_max = 0.5 ! maximum move angle in pivot
pivot_fraction = 0.2 ! fraction of atoms to try in pivot moves
range = 1.5 ! range of attractive well
flatness = 0.9 ! histogram flatness criterion
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in mc_chain_wl_sw'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of stages of refinement', nstage
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Flatness criterion', flatness
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Max atoms in regrow', m_max
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Random tries per atom in regrow', k_max
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Max move angle in crankshaft', crank_max
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Crank fraction', crank_fraction
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Max move angle in pivot', pivot_max
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Pivot fraction', pivot_fraction
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Attractive well range', range
IF ( range < 1.0 ) THEN
WRITE ( unit=output_unit, fmt='(a)' ) 'Warning, range < core diameter (1.0)'
END IF
! Read in initial configuration and allocate necessary arrays
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, bond ) ! First call is just to get n and bond
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of particles', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Bond length (in sigma units)', bond
CALL allocate_arrays
nq = 6*n ! Anticipated maximum number of pair interactions within range
ALLOCATE ( h(0:nq), g(0:nq), s(0:nq), e(0:nq) )
e = [ ( -REAL(q), q = 0, nq ) ] ! Energy values
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, bond, r ) ! Second call gets r
! Set number of crankshaft and pivot moves per step
n_crank = NINT(crank_fraction*REAL(n))
n_pivot = NINT(pivot_fraction*REAL(n))
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of crankshaft tries per step', n_crank
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of pivot tries per step', n_pivot
! Initial energy calculation plus overlap check
IF ( weight() == 0 ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in initial configuration'
STOP 'Error in mc_chain_wl_sw'
END IF
q = qcount ( range )
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Initial energy', q
q_min = q ! Min q seen so far
q_max = q ! Max q seen so far
! Initialize arrays for averaging and write column headings
r_ratio = 0.0
c_ratio = 0.0
p_ratio = 0.0
h(:) = 0.0
CALL run_begin ( calc_variables() )
stage = 1
blk = 0
ds = 1.0 ! Initial entropy refinement term
flat = .FALSE.
s(:) = 0.0
h(:) = 0.0
g(:) = 0.0
DO ! Begin loop over blocks
IF ( stage > nstage ) EXIT ! Run is finished
IF ( flat ) THEN ! Start of next stage
h(:) = 0.0
g(:) = 0.0
flat = .FALSE.
END IF
blk = blk + 1
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
r_ratio = 0.0
CALL regrow ( s, m_max, k_max, bond, range, q, accepted )
IF ( accepted ) r_ratio = 1.0
CALL update_histogram
p_ratio = 0.0
IF ( n_pivot > 0 ) THEN
n_acc = 0
DO try = 1, n_pivot
CALL pivot ( s, pivot_max, range, q, accepted )
IF ( accepted ) n_acc = n_acc + 1
CALL update_histogram
END DO
p_ratio = REAL(n_acc) / REAL(n_pivot)
END IF
c_ratio = 0.0
IF ( n_crank > 0 ) THEN
n_acc = 0
DO try = 1, n_crank
CALL crank ( s, crank_max, range, q, accepted )
IF ( accepted ) n_acc = n_acc + 1
CALL update_histogram
END DO
c_ratio = REAL(n_acc) / REAL(n_crank)
END IF
! Calculate and accumulate variables for this step
CALL blk_add ( calc_variables() )
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
flat = histogram_flat ( flatness ) ! Check for flatness
IF ( flat ) THEN ! End of this stage
WRITE ( unit=output_unit, fmt='(a)' ) REPEAT('-',63)
WRITE ( unit=output_unit, fmt='(a,i3,a,3i3)' ) 'stage', stage, &
& ' q_min q_max q_count =', q_min, q_max, COUNT(h(q_min:q_max)>0.5)
WRITE ( unit=output_unit, fmt='(a)' ) REPEAT('-',63)
IF ( nstage < 1000 ) WRITE(sav_tag,'(i3.3)') stage ! Number configuration by stage
CALL write_cnf_atoms ( cnf_prefix//sav_tag, n, bond, r ) ! Save configuration
CALL write_histogram ( his_prefix//sav_tag ) ! Save histogram
stage = stage + 1 ! Ready for next stage
ds = ds / 2.0 ! Entropy change reduction
END IF
END DO ! End loop over blocks
CALL run_end ( calc_variables() ) ! Output run averages, although these are really not relevant
CALL write_results ! Specimen results at selected temperatures
CALL write_cnf_atoms ( cnf_prefix//out_tag, n, bond, r ) ! Write out final configuration
CALL deallocate_arrays
DEALLOCATE ( h, g, s, e )
CALL conclusion
CONTAINS
FUNCTION calc_variables () RESULT ( variables )
USE averages_module, ONLY : variable_type
IMPLICIT NONE
TYPE(variable_type), DIMENSION(3) :: variables ! The 3 variables listed below
! This function returns all variables of interest in an array, for use in the main program
TYPE(variable_type) :: r_r, c_r, p_r
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Acceptance ratios for regrowth, crankshaft, and pivot moves
r_r = variable_type ( nam = 'Regrow ratio', val = r_ratio, instant = .FALSE. )
c_r = variable_type ( nam = 'Crank ratio', val = c_ratio, instant = .FALSE. )
p_r = variable_type ( nam = 'Pivot ratio', val = p_ratio, instant = .FALSE. )
! Collect together for averaging
variables = [ r_r, c_r, p_r ]
END FUNCTION calc_variables
SUBROUTINE update_histogram
IMPLICIT NONE
! This routine updates the probability histogram of (negative) energies
! It also updates the entropy histogram by ds
! and a histogram of values of radius of gyration
REAL, DIMENSION(3) :: r_cm
REAL :: r_g
IF ( q > nq .OR. q < 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'q out of range ', q, nq
STOP 'Error in update_histogram'
END IF
r_cm = SUM ( r, dim=2 ) / REAL(n) ! Centre of mass
r_g = SQRT ( SUM ( ( r - SPREAD(r_cm,dim=2,ncopies=n) ) ** 2 ) / REAL(n) )
h(q) = h(q) + 1.0
s(q) = s(q) + ds
g(q) = g(q) + r_g
q_min = MIN ( q, q_min )
q_max = MAX ( q, q_max )
END SUBROUTINE update_histogram
FUNCTION histogram_flat ( flatness ) RESULT ( flat )
IMPLICIT NONE
LOGICAL :: flat ! Returns a signal that the histogram is "sufficiently flat"
REAL, INTENT(in) :: flatness ! Specified degree of flatness to pass the test
! We only look at the histogram in the range of q visited during the run
! The flatness parameter should be in (0,1), higher values corresponding to flatter histograms
REAL :: avg
IF ( flatness <= 0.0 .OR. flatness >= 1.0 ) THEN ! Ensure sensible value
WRITE ( unit=error_unit, fmt='(a,f15.6)' ) 'Flatness error ', flatness
STOP 'Error in histogram_flat'
END IF
avg = SUM ( h(q_min:q_max) ) / REAL(q_max+1-q_min)
IF ( avg < 0.0 ) THEN ! This should never happen, unless h somehow overflows
WRITE ( unit=error_unit, fmt='(a,*(es20.8))' ) 'Error in h ', h(q_min:q_max)
STOP 'Error in histogram_flat'
END IF
flat = REAL(MINVAL(h(q_min:q_max))) > flatness*avg
END FUNCTION histogram_flat
SUBROUTINE write_histogram ( filename )
USE, INTRINSIC :: iso_fortran_env, ONLY : iostat_end, iostat_eor
IMPLICIT NONE
CHARACTER(len=*), INTENT(in) :: filename
! This routine writes out the histograms at the end of each stage
! Note that h and g will be reset to zero at the start of the next stage
! so it is OK to normalize them here
! Also we reset the baseline for entropy to avoid the numbers getting too large
! We set s(q_min)=0.0 for convenience; relative to this, most other entropies
! will be negative, but this is not a problem.
INTEGER :: q, ioerr, his_unit
REAL :: norm
OPEN ( newunit=his_unit, file=filename, status='replace', action='write', iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,a,i15)' ) 'Error opening ', filename, ioerr
STOP 'Error in write_histogram'
END IF
! Normalize radius of gyration entries
WHERE ( h > 0.5 ) g = g / h
! Normalize h, converting it to a set of probabilities
norm = SUM(h)
h = h / norm
! Reset baseline for entropy
norm = s(q_min)
s(q_min:q_max) = s(q_min:q_max) - norm
DO q = q_min, q_max
WRITE ( unit=his_unit, fmt='(3f15.6,es20.8)') e(q), h(q), g(q), s(q)
END DO
CLOSE ( unit=his_unit )
END SUBROUTINE write_histogram
SUBROUTINE write_results
IMPLICIT NONE
! Calculates some specimen results after the simulation is finished
! The same calculation can be done afterwards using the data written out by write_histogram
! An example program wl_hist.f90 is provided to illustrate this
REAL, DIMENSION(:), ALLOCATABLE :: t_vals ! Array of temperatures
REAL, DIMENSION(:), ALLOCATABLE :: boltz ! Array of Boltzmann factors (including DOS)
INTEGER :: i, qs_max
REAL :: t, s_max, norm, g_avg, e_avg, e_msd
ALLOCATE ( boltz(q_min:q_max) )
ALLOCATE ( t_vals(10) ) ! Ideally we could omit this as Fortran 2003 should automatically allocate
t_vals = [ 0.15, 0.18, 0.2, 0.22, 0.25, 0.3, 0.5, 1.0, 2.0, 5.0 ]
WRITE ( unit=output_unit, fmt='(a)' ) 'Specimen results'
WRITE ( unit=output_unit, fmt='(4a15)') 'T', 'Rg', 'PE/N', 'Cv(ex)/N'
DO i = 1, SIZE(t_vals) ! Loop over selected temperatures
t = t_vals(i)
! Locate maximum Boltzmann factor (helps avoid overflows)
qs_max = MAXLOC ( s(q_min:q_max) - e(q_min:q_max) / t, dim=1 )
s_max = s(qs_max + q_min - 1)
! Compute Boltzmann weights including density of states
boltz = s(q_min:q_max) - s_max - e(q_min:q_max) / t
boltz = EXP ( boltz )
! Calculate averages
norm = SUM ( boltz )
g_avg = SUM ( boltz * g(q_min:q_max) ) / norm
e_avg = SUM ( boltz * e(q_min:q_max) ) / norm
e_msd = SUM ( boltz * (e(q_min:q_max) - e_avg )**2 ) / norm
e_avg = e_avg / REAL(n) ! Energy per atom
e_msd = e_msd / ( REAL(n) * t**2 ) ! Heat capacity per atom
WRITE ( unit=output_unit, fmt='(4f15.6)' ) t, g_avg, e_avg, e_msd
END DO ! End loop over selected temperatures
DEALLOCATE ( boltz )
END SUBROUTINE write_results
END PROGRAM mc_chain_wl_sw