-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patheloss.cc
584 lines (469 loc) · 21.6 KB
/
eloss.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/**
* @file eloss.cc
* @author Luca Maccione
* @email [email protected]
* @brief In this file all the classes related to energy losses are implemented.
*/
#include "galaxy.h"
#include "grid.h"
#include "gas.h"
#include "input.h"
#include "eloss.h"
#include "constants.h"
#include "fitsio.h"
#include "bfield.h"
#include "geometry.h"
#include <fstream>
#include <iostream>
using namespace std;
TEnergyLoss::TEnergyLoss(TGrid* coord, Input *in) {
inp = in;
dimz = coord->GetDimZ();
dimE = coord->GetDimE();
if (coord->GetType() == "3D") {
dimy = coord->GetDimY();
dimx = coord->GetDimX();
}
else {
dimx = coord->GetDimR();
dimy = 1;
}
if (in->feedback >1) cout << "creating dpdt vector... ";
dpdt = vector<double>(dimx*dimz*dimE*dimy, 0.0);
if (in->feedback >1) cout << "done. " << dimx*dimz*dimE*dimy << " elements." << endl;
}
TIonizationLoss::TIonizationLoss(TGrid* coord, vector<TGas*> gas, TGas* totalgas, Input* in, double A, double Z) : TEnergyLoss(coord,in) {
const double factor = 1e-9*Myr;
if (A != 0) { // hadrons
vector<double> bet = coord->GetBeta();
vector<double> gamma = coord->GetGamma();
const double MA = A*mp*1.e3; // nucleus mass MeV
for (int k = 0; k < dimE; ++k) {
double gammak = gamma[k];
double betak = bet[k];
double qmax = 2.*Mele*(gammak*gammak-1.)/(1. +2.*gammak*Mele/MA);
double bh = log(2.*Mele*(gammak*gammak-1.)*qmax /(EH*EH)) -2.*betak*betak;
double bhe = log(2.*Mele*(gammak*gammak-1.)*qmax /(EHe*EHe))-2.*betak*betak;
for (int i = 0; i < dimx; ++i) {
for (int l = 0; l < dimy; ++l) {
for (int j = 0; j < dimz; ++j) {
int ind = coord->indexD(i,l,j);
double nh = totalgas->GetGas(ind) - gas[2]->GetGas(ind);
dpdt[index(i,l,j,k)] = 2.*PIR02MC2C*fabs(Z)*fabs(Z)/betak*nh*(bh +He_abundance*bhe) * factor / betak;
}
}
}
}
}
else { // leptons
vector<double> bet = coord->GetBetaEl();
vector<double> gamma = coord->GetGammaEl();
// IONIZATION LOSSES in the neutral H and He (Ginzburg 1979, p.360)
for (int k = 0; k < dimE; ++k) {
double gammak = gamma[k];
double betk = bet[k];
for (int i = 0; i < dimx; ++i) {
for (int l = 0; l < dimy; ++l) {
for (int j = 0; j < dimz; ++j) {
int ind = coord->indexD(i,l,j);
double nh = totalgas->GetGas(ind) - gas[2]->GetGas(ind);
dpdt[index(i,l,j,k)] = 2.*PIR02MC2C/betk*( nh*(1.0+ZHe*He_abundance)*( log(gammak-1.)- M_LN2 +1./8.
+2.*log(gammak*betk*Mele) )-nh*2.*log(EiH)-ZHe*nh*He_abundance*2.*log(EiHe) ) * factor / betk;
// cout << "[MW-DEBUG ION] (A=" << A << ") " << k << " " << nh << " " << dpdt[index(i,l,j,k)] << endl;
}
}
}
}
}
}
TCoulombLoss::TCoulombLoss(TGrid* coord, vector<TGas*> gas, Input* in, double A, double Z) : TEnergyLoss(coord,in) {
const double factor = 1e-9*Myr;
if (A != 0) {
vector<double> bet = coord->GetBeta();
vector<double> gamma = coord->GetGamma();
const double MA = A*mp*1.e3; // nucleus mass MeV
for (int k = 0; k < dimE; ++k) {
double betk = bet[k];
double gammak = gamma[k];
double bet3 = pow(betk,3);
double we = bet3/(xm + bet3);
for (int i = 0; i < dimx; ++i) {
for (int l = 0; l < dimy; ++l) {
for (int j = 0; j < dimz; ++j) {
int ind = coord->indexD(i,l,j);
double coullog = -log(4.*PIR0H2C2*gas.back()->GetGas(ind) *(MA+2.*gammak*Mele)
/(4.*gammak*gammak*bet3*betk*Mele*Mele*MA)) /2.;
dpdt[index(i,l,j,k)] = 4.*PIR02MC2C*fabs(Z)*fabs(Z)*gas.back()->GetGas(ind)/betk *coullog *we * factor/betk;
}
}
}
}
}
else {
vector<double> bet = coord->GetBetaEl();
vector<double> gamma = coord->GetGammaEl();
// Coulomb energy losses in the cold H plasma limit (Ginzburg 1979, p.361)
for (int k = 0; k < dimE; ++k) {
double gammak = gamma[k];
double betk = bet[k];
for (int i = 0; i < dimx; ++i) {
for (int l = 0; l < dimy; ++l) {
for (int j = 0; j < dimz; ++j) {
double coullog2 = 0.;
double nhi = gas.back()->GetGas(i,l,j);
if(nhi > 0.)
coullog2=log(gammak*Mele/nhi*Mele/(4.*Pi*Rele*H2PiC*H2PiC))-3./4.;
dpdt[index(i,l,j,k)] = 2.*PIR02MC2C *nhi/betk *coullog2 * factor/betk;
// cout << "[MW-DEBUG COULOMB] (A=" << A << ") " << k << " " << coullog2 << " " << nhi << " " << dpdt[index(i,l,j,k)] << endl;
}
}
}
}
}
}
TBremsstrahlungLoss::TBremsstrahlungLoss(TGrid* coord, vector<TGas*> gas, TGas* totalgas, Input* in) : TEnergyLoss(coord,in) {
const double factor = 1e-9*Myr;
// Bremsstrahlung energy losses in neutral gas (Ginzburg 1979, p.386,409)
double brem1 = 0.0;
vector<double> bet = coord->GetBetaEl();
vector<double> gamma = coord->GetGammaEl();
for (int i = 0; i < dimx; ++i) {
for (int l = 0; l < dimy; ++l) {
for (int j = 0; j < dimz; ++j) {
int ind = coord->indexD(i,l,j);
double nhi = gas.back()->GetGas(ind);
double nh = totalgas->GetGas(ind) - nhi;
double nhe_cm3 = He_abundance*nh; // 1/cm^3, He number densit
for (int k = 0; k < dimE; ++k) {
double gammak = gamma[k];
if(gammak < gam1) brem1 = gammak*Mele *4.*AFR02MC2C/Mele
*(2.*nh+ZHe*(ZHe+1.)*nhe_cm3)*(log(2.*gammak)-1./3.);
else
if(gammak > gam2) brem1 = 1.e6 *gammak*Mele*C*(nh*MH/TH +nhe_cm3*MHe/THe);
else // linear interpolation provides max 10% error to an exact value
brem1 = gam1*4.*AFR02MC2C
*(2.*nh+ZHe*(ZHe+1.)*nhe_cm3)*(log(2.*gam1)-1./3.)
*(gam2-gammak)/(gam2-gam1) +(gammak-gam1)/(gam2-gam1)
*1.e6 *gam2*Mele *C*(nh*MH/TH +nhe_cm3*MHe/THe);
dpdt[index(i,l,j,k)] = (brem1 + gammak*Mele*4.*2.*AFR02MC2C/Mele*nhi*(log(2.*gammak)-1./3.) ) * factor/bet[k];
// cout << "[MW-DEBUG BREMS] " << k << " " << brem1 << " " << gammak << " " << dpdt[index(i,l,j,k)] << endl;
// Bremsstrahlung energy losses in hydrogen plasma (Ginzburg 1979, p.408)
//dpdt[index(i,j,k)] += gammak*Mele*4.*2.*AFR02MC2C/Mele*nhi*(log(2.*gammak)-1./3.) * 1.e-9*Myr/bet[k];
}
}
}
}
}
TSynchrotronLoss::TSynchrotronLoss(TGrid* coord, TBField* B, Input* in) : TEnergyLoss(coord,in) {
//cout << "test synch " << endl;
vector<double> bet = coord->GetBetaEl();
vector<double> gamma = coord->GetGammaEl();
vector<double> x_vec = coord->GetX();
vector<double> y_vec = coord->GetY();
vector<double> z_vec = coord->GetZ();
vector<double> E_vec = coord->GetEk();
int dimx = coord->GetDimX();
int dimy = coord->GetDimY();
int dimz = coord->GetDimZ();
//MW130622
unsigned int ixsun = 0;
unsigned int iysun = 0;
unsigned int izsun = 0;
while(x_vec[++ixsun] <= inp->xobs){}
ixsun--;
if(coord->GetType()=="3D")
{
while(y_vec[++iysun] <= in->yobs){}
iysun--;
}
while(z_vec[++izsun] <= in->zobs){}
izsun--;
//cout << endl;
//cout << " *** Synch losses *** " << endl;
//cout << ixsun << " " << iysun << " " << izsun << endl;
//cout << "test synch" << endl;
for (int ix = 0; ix < dimx; ++ix) {
for (int iy = 0; iy < dimy; ++iy) {
for (int iz = 0; iz < dimz; ++iz) {
double bendens = B->GetEnDensity(ix,iy,iz);
//cout << "Bendens = " << bendens << endl;
for (int ip = 0; ip < dimE; ++ip) {
dpdt[index(ix,iy,iz,ip)] = 32./9.*PIR02C*bendens*(gamma[ip]*gamma[ip]-1.)* 1.e-9*Myr/bet[ip];
//cout << "[MW-DEBUG BF] " << ip << " " << bendens << " " << gamma[ip] << " " << dpdt[index(ix,iy,iz,ip)] << endl;
//if (ix == ixsun && iy == izsun && iz == iysun && ip%5 == 0)
//cout << x_vec[ix] << " " << y_vec[iy] << " " << z_vec[iz] << "; E= " << E_vec[ip] << "; dpdt= " << dpdt[index(ix,iy,iz,ip)] << " GeV/Myr " << endl;
}
}
}
}
}
TICSLoss::TICSLoss(TGrid* coord, TISRF* isrf, Input* in) : TEnergyLoss(coord,in) {
vector<double> x_vec = coord->GetX();
vector<double> y_vec = coord->GetY();
vector<double> z_vec = coord->GetZ();
vector<double> E_vec = coord->GetEk();
int dimx = coord->GetDimX();
int dimy = coord->GetDimY();
int dimz = coord->GetDimZ();
//MW130622
unsigned int ixsun = 0;
unsigned int iysun = 0;
unsigned int izsun = 0;
while(x_vec[++ixsun] <= in->xobs){}
ixsun--;
if(coord->GetType()=="3D")
{
while(y_vec[++iysun] <= in->yobs){}
iysun--;
}
while(z_vec[++izsun] <= in->zobs){}
izsun--;
//cout << endl;
//cout << " *** IC losses *** " << endl;
//cout << ixsun << " " << iysun << " " << izsun << endl;
const double factor = eV_to_erg / h_planck * isrf->GetDnu()*Myr*1e-3;
vector<double> nuarr = isrf->GetNuArray();
//cout << " Starting loop over x,y,z,E to compute IC losses " << endl;
for (int i = 0; i < dimx; ++i) {
for (int l = 0; l < dimy; ++l) {
for (int j = 0; j < dimz; ++j) {
for (int k = 0; k < dimE; ++k) {
int ind = index(i,l,j,k);
// Need to integrate over frequency.
for (unsigned int nu_ind = 0; nu_ind < nuarr.size(); ++nu_ind) {
dpdt[ind] += factor*isrf->GetISRF(i, l, j, nu_ind)/nuarr[nu_ind]*isrf->GetElossCompton(nu_ind,k);
//if (i == ixsun && j == izsun && l == iysun)
//cout << x_vec[i] << " " << y_vec[l] << " " << z_vec[j] << "; E= " << E_vec[k] << "; dpdt= " << dpdt[index(i,j,j,k)] << " GeV/Myr " << endl;
}
}
}
}
}
}
TISRF::TISRF(TGrid* Coord, string filename, TGeometry* geom, Input* in) {
int status = 0;
fitsfile *fptr = NULL;
if ( fits_open_file(&fptr, filename.c_str(), READONLY, &status) ) fits_report_error(stderr, status);
int NAXIS, NAXIS1, NAXIS2, NAXIS3, NAXIS4;
float CRVAL1,CRVAL2,CRVAL3,CDELT1,CDELT2,CDELT3;
char comment[100];
if( fits_read_key(fptr,TINT,"NAXIS" ,&NAXIS ,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TINT,"NAXIS1",&NAXIS1,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TINT,"NAXIS2",&NAXIS2,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TINT,"NAXIS3",&NAXIS3,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TINT,"NAXIS4",&NAXIS4,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TFLOAT,"CRVAL1",&CRVAL1,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TFLOAT,"CRVAL2",&CRVAL2,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TFLOAT,"CRVAL3",&CRVAL3,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TFLOAT,"CDELT1",&CDELT1,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TFLOAT,"CDELT2",&CDELT2,comment,&status) ) fits_report_error(stderr, status);
if( fits_read_key(fptr,TFLOAT,"CDELT3",&CDELT3,comment,&status) ) fits_report_error(stderr, status);
dimr_isrf = NAXIS1;
dimz_isrf = NAXIS2;
dimnu = NAXIS3;
ncomp = NAXIS4;
long nelements=dimr_isrf*dimz_isrf*dimnu*ncomp;
long felement=1;
float *isrf_in = new float[nelements]();
float nulval=0;
int anynul;
if( fits_read_img(fptr,TFLOAT,felement,nelements,&nulval,isrf_in,&anynul,&status) ) fits_report_error(stderr, status);
if (fits_close_file(fptr, &status)) fits_report_error(stderr, status);
nu_array.assign(dimnu,0.0);
// microns -> cm; nu=c/lambda
for(int inu = 0; inu < dimnu; inu++)
nu_array[dimnu-1-inu]=C/(pow(10.,1.*CRVAL3+inu*CDELT3)*1.0e-4); // nu is in Hz
//cout << "nu vector for ISRF" << endl;
//for(int inu = 0; inu < dimnu; inu++)
//cout << nu_array[inu] << " ";
//cout << endl;
vector<double> x;
vector<double> y;
if (Coord->GetType() == "3D") {
x = Coord->GetX();
y = Coord->GetY();
dimx = x.size();
dimy = y.size();
}
else {
x = Coord->GetR();
dimx = x.size();
dimy = 1;
}
vector<double> z = Coord->GetZ();
dimz = z.size();
ISRField.assign(dimnu*dimx*dimy*dimz, 0.0);
vector<double> ISRF_r_profile(dimx*dimnu,0.0);
vector<double> ISRF_z_profile(dimz*dimnu,0.0);
if (in->ISRF_model == GalpropISRF) {
for(int i = 0; i < ncomp; i++) {
for(int ix = 0; ix < dimx; ix++) {
for(int iy = 0; iy < dimy; iy++) {
double r = 0;
if (y.size()) r = sqrt(x[ix]*x[ix]+y[iy]*y[iy]);
else r = x[ix];
for(int iz = 0; iz < dimz; iz++) {
int irr=(int)((r -CRVAL1) /CDELT1+0.5);
int izz=(int)((fabs(z[iz])-CRVAL2) /CDELT2+0.5);
if(irr>NAXIS1-2) irr=NAXIS1-2;
if(izz>NAXIS2-2) izz=NAXIS2-2;
float rr=CRVAL1+irr*CDELT1;
float zz=CRVAL2+izz*CDELT2;
for(int inu = 0; inu < dimnu; inu++) {
float v1=isrf_in[isrf_index(irr ,izz ,inu,i)];
float v2=isrf_in[isrf_index(irr+1,izz ,inu,i)];
float v3=isrf_in[isrf_index(irr ,izz+1,inu,i)];
float v4=isrf_in[isrf_index(irr+1,izz+1,inu,i)];
float v5=v1+(v2-v1)*(r-rr)/CDELT1;
float v6=v3+(v4-v3)*(r-rr)/CDELT1;
float value=v5+(v6-v5)*(fabs(z[iz])-zz)/CDELT2;
if(value<0.0) value=0.0;
if (i==0 || i==1)
value *= 1.0;
if (Coord->GetType() == "3D") {
double spiral_factor_isrf = 1.;
if(i==0) //MW130625: modeling starlight component after spiral arms
{
spiral_factor_isrf = max( min( pow(geom->GetPattern(ix,iy,iz), Coord->in_SA_ISRFStar), Coord->in_SA_cut_ISRF), 1./Coord->in_SA_cut_ISRF );
}
else if(i==1) //MW130625: modeling dust component after spiral arms
{
spiral_factor_isrf = max( min( pow(geom->GetPattern(ix,iy,iz), Coord->in_SA_ISRFDust), Coord->in_SA_cut_ISRF), 1./Coord->in_SA_cut_ISRF );
}
value *= spiral_factor_isrf;
//MW 130822: for Local Bubble, there is only one parameter, but still, don't change the CMB component!
if(i!=2) value *= pow( Coord->in_LB_ISRF, Coord->IsInLocalBubble(x[ix],y[iy],z[iz]) );
}
// reverse scale from wavelength to frequency
ISRField[index(dimnu-1-inu, ix, iy, iz)] += value;
} // inu
} // iz
} // iy
} // ix
}
unsigned int irsun = (unsigned int) ((in->robs-x.front())/(x.back()-x.front())*(double)(dimx-1));
unsigned int izsun = (unsigned int) ((in->zobs-z.front())/(z.back()-z.front())*(double)(dimz-1));
for(int inu = 0; inu < dimnu; inu++) {
for(int ix = 0; ix < dimx; ix++) {
ISRF_r_profile[inu*dimx+ix] = ISRField[index(inu, ix, dimy/2, izsun)] ;
if (ix == irsun) {
for(int iz = 0; iz < dimz; iz++) {
ISRF_z_profile[inu*dimz+iz] = ISRField[index(inu, irsun, dimy/2, iz)];
}
}
}
}
/*cout << "*** Galprop ISRF nu array *** " << endl;
for (int inu=0; inu < dimnu; inu++)
cout << nu_array[inu] << " " ;
cout << endl << "*** Galprop IRSF at Sun position ***" << endl;
for (int inu=0; inu < dimnu; inu++)
cout << ISRField[index(inu,irsun,dimy/2,izsun)] << " " ;
cout << endl << "*** Galprop IRSF profile along R ***" << endl;
for (int inu=0; inu < dimnu; inu=inu+6) {
cout << "* ------------------------- " << endl;
cout << "* frequency = " << nu_array[inu] << " Hz"<< endl;
cout << "* ------------------------- " << endl;
cout << "* " ;
for(int ix = 0; ix < dimx; ix=ix+4) {
cout << " x = " << x[ix] << " --> " << ISRF_r_profile[inu*dimx+ix] << " ||";
}
cout << endl;
}
cout << endl << "*** Galprop IRSF profile along z ***" << endl;
for (int inu=0; inu < dimnu; inu=inu+6) {
cout << "* ------------------------- " << endl;
cout << "* frequency = " << nu_array[inu] << " Hz"<< endl;
cout << "* ------------------------- " << endl;
cout << "* " ;
for(int iz = 0; iz < dimz; iz=iz+2) {
cout << " z = " << z[iz] << " --> " << ISRF_z_profile[inu*dimz+iz] << " ||";
}
cout << endl;
}*/
}
else if (in->ISRF_model == UniformISRF) {
//implemented by D.Gaggero -- september 2013
//WARNING: NO SPIRAL PATTERN IS APPLIED IN THIS MODE. Fix this!
int n_isrf = 6;
vector<double> t0isrf;
vector<double> factor;
t0isrf.assign(n_isrf,0.);
factor.assign(n_isrf,0.);
factor[0] = 1.;
t0isrf[0]=2.726;
factor[1] = 4.5e-5;
t0isrf[1]=33.07;
factor[2] = 1.2e-9;
t0isrf[2]=313.32;
factor[3] = 7.03e-13;
t0isrf[3]=3249.3;
factor[4] = 3.39e-14;
t0isrf[4]=6150.4;
factor[5] = 8.67e-17;
t0isrf[5]=23209.0;
double hPlanck = 4.135638e-15; // eV/Hz
double kB = 8.6173324e-5; // eV/K
// C is in cm/s from constants.h
vector<double> ISRF_vector;
ISRF_vector.assign(dimnu,0.);
cout << "*** ISRF vector from Delahaye et al. 2010 *** " << endl;
for(int inu = 0; inu < dimnu; inu++) {
// ISRF is in eV/(cm3 Hz)
for (int i_isrf = 0; i_isrf < n_isrf; i_isrf++) {
double u_nu = factor[i_isrf] * (8.* M_PI * hPlanck)/(C*C*C) * pow(nu_array[inu],3.) * ( 1./ ( exp(hPlanck*nu_array[inu]/(kB*t0isrf[i_isrf])) - 1. ) );
ISRF_vector[inu] += nu_array[inu] * u_nu;
}
cout << ISRF_vector[inu] << " ";
}
cout << endl;
for(int ix = 0; ix < dimx; ix++) {
for(int iy = 0; iy < dimy; iy++) {
for(int iz = 0; iz < dimz; iz++) {
for(int inu = 0; inu < dimnu; inu++) {
ISRField[index(inu, ix, iy, iz)] = ISRF_vector[inu];
}
}
}
}
}
// microns -> cm; nu=c/lambda
//for(int inu = 0; inu < dimnu; inu++) nu_array[dimnu-1-inu]=C/(pow(10.,1.*CRVAL3+inu*CDELT3)*1.0e-4); --> already did before!
delete[] isrf_in;
Dnu = log(nu_array[1]/nu_array[0]);
// Init Loss Compton
int dimE = Coord->GetDimE();
const double convfact = (h_planck * erg_to_eV * 1.0e-6 / Mele);
vector<double> nu_me(nu_array);
for (int i = 0; i < dimnu; i++) nu_me[i] *= convfact;
vector<double> gamma_el = Coord->GetGammaEl();
vector<double> beta_el = Coord->GetBetaEl();
e_loss_Compton = vector<double>(dimE*dimnu,0.0);
for (int i = 0; i < dimE; i++) {
long double gam = gamma_el[i];
long double bet = beta_el[i];
long double gbar = gam*(1.0+bet);
long double gambet = gam*bet;
for (int k = 0; k < dimnu; k++) {
long double num = nu_me[k];
long double value = 0.0;
if (gam*pow(num*gam,3)< 4e-5)
value =
Mele*0.5*Pi*Rele*Rele*C/pow(gam,2)/bet/pow(num,2)*(
56.0/25.0*pow(num,5)*gambet*gam*(7.0*pow(gambet,4)
+5.0*gam*gam*(-5.0+7.0*gam*gam)
+5.0*gambet*gambet*(-5.0+14.0*gam*gam))
-16.0/45.0*pow(num,4)*gambet*gam*gam*(-48.0 +63.0*gam*gam
+bet*bet*(-16.0+63.0*gam*gam))
+16.0/9.0*pow(num,3)*gambet*gam*(-3.0+(3.0+bet*bet)*gam*gam)
);
else
value = Mele*0.5*Pi*Rele*Rele*C/pow(gam,2)/bet/pow(num,2)
* ( gam * (f1(num*gbar)-f1(num/gbar)) -
num * (f2(num*gbar)-f2(num/gbar))
);
e_loss_Compton[i*dimnu+k] = (value < 0.0) ? 0.0 : value;
}
}
return ;
}