-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
58 lines (43 loc) · 1.62 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class IrisNet(nn.Module):
def __init__(self):
super(IrisNet, self).__init__()
self.fc1 = nn.Linear(4, 100)
self.fc2 = nn.Linear(100, 100)
self.fc3 = nn.Linear(100, 3)
self.softmax = nn.Softmax(dim=1)
def forward(self, X):
X = F.relu(self.fc1(X))
X = self.fc2(X)
X = self.fc3(X)
X = self.softmax(X)
return X
if __name__ == "__main__":
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=42)
train_X = Variable(torch.Tensor(X_train).float())
test_X = Variable(torch.Tensor(X_test).float())
train_y = Variable(torch.Tensor(y_train).long())
test_y = Variable(torch.Tensor(y_test).long())
model = IrisNet()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(1000):
optimizer.zero_grad()
out = model(train_X)
loss = criterion(out, train_y)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print("number of epoch {} loss {}".format(epoch, loss))
predict_out = model(test_X)
_, predict_y = torch.max(predict_out, 1)
print("prediction accuracy {}".format(accuracy_score(test_y.data, predict_y.data)))
torch.save(model.state_dict(), "weights.pth")